1	North America and Europe		
2	CHAPTER 2		
3	CHANGES IN AGRICULTURE AND FOOD PRODUCTION IN NAE SINCE 1945		
4			
5	Coordii	nating Lead Authors: Mary Hendrickson (USA), Mara Miele (Italy)	
6	Lead Authors: Rebecca Burt (USA), Joanna Chataway (UK), Janet Cotter (UK), Béatrice Darcy-		
7	Vrillon (France), Guy Debailleul (Canada) andrea Grundy (UK), Kenneth Hinga (USA), Brian		
8	Johnson (UK), Helena Kahiluoto (Finland), Peter Lutman (UK), Uford Madden (USA), Miloslava		
9	Navrátilová (Czech Republic)		
10	Contributing Authors: Dave Bjorneberg (USA), Randy L. Davis (USA), William Heffernan (US),		
11	Susanne Johansson (Sweden), Veli-Matti Loiske (Sweden), Luciano Mateos (Spain), Selyf		
12	Morgan (UK); Jyrki Niemi (Finland), Fred Saunders (Australia), Paresh Shah (UK), Gerard Porter		
13	(UK), Elisabeth Ransom (USA), Peter Reich (USA), Leonid Sharashkin (Russia), Timo Sipiläinen		
14	(Finland), Joyce Tait (UK), K.J. Thomson (UK), Francesco Vanni (Italy), Bill Vorley (UK), Markku		
15	Yli-Halla (Finland)		
16	Review	<i>editors:</i> Barbara Dinham (UK), Maria Fonte (Italy)	
17			
18	Key Messages3		
19	2.1	Agriculture and Food System Specialization in NAE7	
20	2.1.1	Changes in farming and rural population in North America	
21	2.1.2	Changes in European farming and rural populations	
22			
23	2.2	Farm Policies and the Development of NAE Agricultures18	
24	2.2.1	US farm policy: A legacy of the Great Depression	
25	2.2.2	Canada: a bipolar farm policy	
26	2.2.3	Common Agricultural Policy and the building of a single market	
27	2.2.4	Agricultural policies in CEE countries	
28			
29	2.3	Changes in Market Structure	
30			
31	2.4	Changes in NAE Cropping Systems since 1945	
32	2.4.1	Changes in soil AKST and use since 1945	

1	2.4.2	Changes in cropping systems in NAE
2	2.4.3	Increasing cropping systems productivity through inputs
3	2.4.3.1	Mechanization
4	2.4.3.2	Plant breeding, seeds and genetics
5	2.4.3.3	Nutrients in cropping systems
6	2.4.3.4	Pesticide usage in NAE cropping systems
7	2.4.3.5	Water control in NAE cropping systems
8	2.4.4	Agricultural products for energy and fuels
9	2.4.5	Organic cropping systems
10	2.4.6	Key changes in cropping systems and drivers
11		
12	2.5	Changes in Livestock Systems in NAE51
13	2.5.1	Trends in output and productivity since 1945
14	2.5.2	Drivers of increased livestock output and productivity
15	2.5.3	Key changes in the NAE livestock sector
16		
17	2.6	Changes in Forestry Systems61
18	2.6.1	Main trends in NAE forests and forestry production
19	2.6.2	Forest ownership and control
20	2.6.3	Forestry as an industry
21	2.6.4	AKST in forestry
22	2.6.5	Forest institutions
23	2.6.6	Drivers of changes in forestry
24	2.6.7	Trends in NAE forestry
25		
26	2.7	Changes in Aquaculture Production
27	2.7.1	North American aquaculture
28	2.7.2	European aquaculture
29	2.7.3	Science and technology in aquaculture
30	2.7.4	Key changes in aquaculture
31		
32	2.8	Key Changes in Post-Harvest and Consumption Systems75
33	2.8.1	Changes in the food retail sector in NAE
34	2.8.2	Concentration and trends at national levels
35	2.8.3	Changes in food manufacturing and processing
36	2.8.4	Market segmentation
37	2.8.5	Food safety, quality regulation and food market niches

- 1 2.8.6 Changes in diet/consumption
- 2 2.8.7 Key changes in consumption systems
- 3

1 Key Messages

2

3 1. Following WWII rapid advances in the understanding of plant and animal biology fueled

4 productivity increases and provided new tools for identifying and addressing agricultural

5 problems. In this period, agricultural production and productivity increased significantly,

6 especially in Western Europe and North America, but more slowly in Central and Eastern

7 Europe. The increased productivity of agriculture was supported by technological

8 development and food supply policies.

9

An increased range of technologies and tools has been available to agriculture primarily through
 advances in AKST. Farmers have accessed AKST to enhance crop and livestock productivity and
 quality. Efficient knowledge transfer systems developed in the governmental and private sectors

13 have facilitated the dissemination of these new tools. Information technology (IT) has

14 revolutionized AKST as well as food manufacturing, transportation and distribution and has

15 allowed efficient dissemination of AKST.

16

17 The broad range of new technologies, some of them controversial, has had and is having 18 significant impacts for all NAE societies. The impacts of scientific and technological advances 19 have been and are being, felt in both conventional plant and animal breeding programs and those 20 involving biotechnology. Biotechnology, including genetic engineering, has greatly expanded the 21 speed at which traits critical to agriculture can be identified and manipulated.

22

23 Crop production has increased considerably over the last 50 years in the NAE particularly in 24 output per unit area. These increases have been due to improved soil management, increased 25 fertilizer use, including new synthetic fertilizers, greater technological sophistication and scale of 26 agricultural mechanization and development of agrochemicals for pest and disease control. Wider 27 adoption of irrigation coupled with the conversion of pasture to permanent cultivation has 28 contributed to production increases. The development of plant breeding technologies, including 29 hybrids and genetically engineered varieties, have changed the way most North American and 30 Western European farmers obtain seed to annual purchases rather than saving seed. Uptake of 31 genetic engineered crops has differed markedly in the region. They form a part of just a few 32 cropping systems (predominantly soybeans and cotton, but also maize and canola) in North 33 America.

34

Overall, livestock productivity and output in NAE has increased since 1945 with beef, pig meat
 and milk production almost doubling and a four-fold increase in numbers of poultry. This has been
 driven by increasing demand from a growing and wealthier population and by production-oriented

1 policies. Increases in productivity are due to animal breeding developments, intensive rearing

2 systems, antibiotic use and high-yielding pastures. Technical advances in fish breeding and

3 rearing have led to considerable increases in production in both saltwater and freshwater fish

- 4 farming.
- 5

6 NAE is the only region where there has been an increase in forest area since the 1960s, partly as 7 a result of increased plantations and partly resulting from re-growth following abandonment of 8 agricultural land. Demand for forest products in NAE has increased dramatically because of a 9 larger and wealthier population. New management and processing technologies have been 10 introduced to meet these demands resulting in increased efficiency and better access to remote 11 areas. The environmental guality of forests in NAE has declined somewhat over the last 50 years. 12 This has been caused by a variety of factors, including a significant increase in forest fires across 13 NAE; it is a complex issue still not fully understood.

14

In North America and Western Europe, agricultural policies were adopted and implemented to improve farm income, to promote use of technology and to sustain productivity. In terms of increasing productivity and total production, these policies were largely successful. They also helped improve average farm income, ameliorated poverty in rural populations in some regions and contributed to overall economic development.

20

2. These increases in total food production addressed much of the problem of hunger and
food shortages across NAE. The increase in food supply in NAE has progressively led to a
greater availability of food both in quantity and variety and more recently to an
overabundance of calories. Despite the absolute quantity of calories available, poor
households across the region often do not have access to an adequate nutritious diet.

26

The increase in agricultural productivity has led to a decrease in real prices of agricultural products in North America and Western Europe over the last 40 years. This situation has led to

29 more affordable food and ensured food security for the majority of the NAE population.

30 Nevertheless, increased food availability and changes in human behavior and lifestyle have

31 favored the development of nutrition-related chronic diseases. Over the last 15 years, these

32 chronic diseases, including obesity, have had a heavy economic, public and social cost

33 throughout the region.

34

In Eastern Europe and the Soviet Union, the degree of food self-sufficiency increased from the
late 1940s until the 1970s; however, in the USSR, food and agricultural shortages from the 1960s

to the 1980s led to increased agricultural imports. In the 1990s a transition period occurred in

Central and Eastern European countries characterized by falling output. Household allotments
 have been particularly important in the former Soviet Union and now Russia, for food security
 where small household producers account for 25-50% of agricultural output (e.g. potatoes, key
 vegetables and meats).

5

6 3. Knowledge systems used for breeding new plant and animal varieties and for
agrochemicals have been partially protected as intellectual property and increasingly
privatized. The emergence of technologies protected as intellectual property has created
synergies that have favored industry consolidation and has facilitated the creation of NAE-based
transnational agribusinesses. These transnationals now account for almost a third of commercial
seeds worldwide and a significant share of livestock genetics.

12

13 4. The structure of the food system has changed with time in NAE. The agricultural and 14 food system has become more vertically integrated from agricultural inputs to food 15 retailing. Improved productivity and food security led to mature markets for staple food 16 stuffs and limited the opportunities for further growth. Food suppliers responded by 17 increased differentiation and food innovation. The largest actors, including large-scale 18 food retailing and food catering/service businesses have increasing influence over the 19 production of food. Food suppliers sought to expand the market initially by increasing the range 20 of available foodstuffs through trade in 'exotic' foods, through all-year round supply of fruits and 21 vegetables, through the development of the processed food market and through the development 22 of 'quality' food products. Crop and livestock enterprises have become fewer and larger due to 23 economies of scale; this trend is likely to continue. Changes in agricultural labor have been 24 uneven across the region and across agricultural systems. The need for farm labor has generally 25 decreased in conventional cropping and livestock system, but some farming systems, particularly 26 fruit and vegetable production, have intensive demands for farm labor. Increases in sizes of farm 27 and food processing entities have often led to reliance on immigrant labor.

28 5. Biofuels have always been a component of energy production in NAE, especially for

29 heat, although biomass is generally less important as a fuel source in NAE than in other

30 regions. In the past several years, biofuel production has dramatically increased in

- 31 **importance and application.** Policy directives across much of the NAE have led to the
- 32 subsidization of the use of biofuels to replace fossil fuels, which has spurred the production of
- 33 bioethanol and biodiesel, mostly from maize and oilseed rape. There is active research to
- 34 generate "second-generation" biofuels from other more energy-rich plant source materials,
- 35 especially biomass.

1 6. The concerns over the application of new tools and technologies and the changed 2 production systems resulting from them have contributed to a growing environmental, 3 social and health awareness in NAE. Crop and livestock production in the NAE is among the 4 most intensive in the world and this has had serious adverse impacts on the environment. 5 Increased awareness of these adverse effects has resulted in regulatory frameworks for the use 6 of agrochemicals, the use of new tools and technologies and the development of alternative 7 production systems, including organic agriculture. This awareness has led to changes away from 8 production-oriented policies toward those that are market-driven or environmentally led. The 9 recognition of the multiple roles of agriculture has emerged in political and economic agendas. 10 11 In these agendas, agriculture is now seen as delivering not only food but services that meet 12 emerging social demands such as environmental protection, (including the management of 13 resources such as water and land, landscape, biodiversity and natural habitat); environmentally-14 friendly production of food; use of land for residential needs and recreational activities; protection 15 of local cultures and knowledge; protection of cultural heritage through the production of 16 traditional foods; ethical dimensions of food production such as positive contributions to food 17 security and social justice (e.g. fair trade); and animal welfare considerations. These 18 developments have been concurrent with an increasing demand for variety, including increased 19 demand for foods that are high quality; locally produced; regionally specialized; organic; fairly 20 traded; humanely produced; and ethnic. 21 22 The relative peace and stability in NAE has been an important component in securing food 23 security.

1 2.1 Agriculture and Food System Specialization in NAE

2 In the past few decades agriculture in North America and Europe has gone through dramatic

- 3 structural change. There has been a decrease in the number of farms, reduction in the
- 4 agricultural labor force, increased specialization geographically and at the farm level and a loss of
- 5 self-sufficiency at the farm level.
- 6

7 Technological change has been rapid in NAE and the introduction of any new agricultural 8 technology has implications for markets, producers and consumers (Hayami and Ruttan, 1985; 9 Kislev and Peterson, 1986). In most of NAE, technological change has favored capital intensive 10 technologies and economies of scale. Mechanization has increased, generally allowing for larger 11 average farm sizes although there is considerable heterogeneity in farm size and scale in NAE. 12 Most NAE farmers have attempted a scale of operation characterized by the lowest cost per unit 13 of output. The average unit cost follows an L-shape function; the unit cost at first decreases 14 sharply with size but then reaches a plateau (Hall and Leveen, 1978; Nehring, 2005). The 15 evidence for diseconomies of size is weak or non-existant. In spite of the fact that the average 16 size of farms has increased in most of NAE, they are mainly managed by private farm families, 17 most of which rely on off-farm income in addition to income from farming activities (Hoppe and

18 19 Banker, 2005).

20 The decreasing number of farms, combined with increasing total output has led to concentration 21 of production (Fig. 2-1). The number of farms necessary to produce a particular share of output 22 has fallen; for example, from 1989 to 2003 the fraction of US farm production by large scale 23 family and non-family farms increased from 57.7 to 72.8%). In Western Europe the farm size in 24 terms of land area is only one tenth of that in the US; the number of farms is much higher but 25 rapidly decreasing. From 1983 to 2001 the number of farms decreased in EU-12 from about 9 26 million to 6.5 million, but farms grew larger, especially in the livestock sector. A larger percentage 27 of the farms in Europe compared to farms in North America operate on a part-time basis because 28 of the smaller farm size.

29

30 Insert Figure 2.1. Change in farm size and number of farms in North America from 1940-2000

31

32 Economic growth also contributes to farm structure (Heady, 1962). Other things being equal,

including the labor share of inputs, the scale of farm businesses must increase in proportion to

34 the increase in non-farm labor earnings. The growth of other sectors of the economy has driven

35 labor from agriculture to more productive sectors in most parts of the NAE.

1 Specialization, an important aspect of productivity growth in NAE agriculture, has improved the 2 spatial organization of the food chain and lowered production and transportation costs (Chavas, 3 2001). In Western Europe and North America, specialization occurred largely because of 4 economies of scale, larger economic forces and technological change. When economies of scale 5 (the unit cost decreases with size) prevails over economies of scope (synergies between 6 products and by-products), specialization increases which is followed by an increased size in 7 production units. This leads to regional specialization and concentration. Government policies 8 may also influence farm size and numbers. Agricultural policies after World War II directly 9 promoted specialization through incentives (e.g. Pirog et al., 2001; for a fuller discussion of 10 policies see 2.2). Yet larger trends have usually overshadowed the impact of policy programs on 11 farm structure. 12 13 Farm specialization is particularly pronounced in North America (see Table 2-1) and in central 14 and eastern European areas that experienced collectivization. Specialization differs by farm size 15 with smaller farms the most likely to produce one commodity (Cash, 2002) (Figure 2-2). The 16 average number of commodities produced per farm has fallen from 4.6 in 1945 to 1.3 in 2002 17 (Dimitri and Effland, 2005) even though financially successful farms have tended to be more 18 diversified (Hoppe, 2001). Farms in the United States now have a bimodal distribution, with the 19 number of farms in the middle declining (Duffy, 2003). More than 25% of very large family farms 20 are specialized in hog and poultry and closely linked to processors (Hoppe and Korb, 2005). 21 22 Insert Table 2-1. 100 years of structural change in US agriculture 23 24 Insert Figure 2-2. Distribution of number of commodities by sales class 1999 25 26 Insert Figure 2-3. US farmland area (%) and total US farm production (%) by type of farm in 2005 27 28 While agricultural production is now highly concentrated in large farms, there still are a large 29 number of more diverse small farms coexisting with a small number of very large farms that 30 capture most of the markets for agricultural commodities (Miljkovic, 2005). Crop diversity declined 31 between the 1930s and 1980s; the area sown to grain crops increased and woodland on farms 32 declined (Medley et al., 1995). During this period the number of farms decreased by 60% and 33 farm size increased from 37 ha in 1925 to 72 ha in 1987. 34 35 An examination of farm by type of ownership-operation provides a useful look at the diversity of 36 farm types currently in the US Land is distributed fairly evenly among different types of farms,

37 ranging from part-time farmers to very large scale operations (Figure 2-3). The large-scale, very-

1 large-scale and non-family farms represent a disproportionately large fraction of the total US farm

2 production (73% of the production from 38% of the farm area). Yet the majority of farms (98%) in

3 the US as of 2003 are family-owned farms, though they may be organized as proprietorships,

4 partnerships, or family corporations (Hoppe and Banker, 2006).

5

6 Specialization in the eastern part of NAE has followed a different path due to collectivization after 7 World War II. The collectivization of agriculture was intended to exploit economies of scale, 8 particularly in respect to mechanization and the use of agrichemicals. These were more obvious 9 in large-scale crop production and possibly in intensive livestock production; they were less 10 clearly applicable to farming in mountainous areas, or with labor-intensive crops. Collectivization 11 led to the establishment of large collective or state farms which were highly mechanized and 12 specialized but often inefficient in their use and allocation of resources. In the former Soviet Union 13 the collectivized sector of agriculture (99.6% of agricultural producers were collectivized by 1955) 14 grew significantly during the post-war decades (Matskevich, 1967). After World War II, the Central 15 and Eastern Europe (CEE) countries were major suppliers of agricultural products to the Soviet 16 Union. Compared to the more arid regions of the Soviet Union soils were relatively productive and 17 a system of large collective farms was developed in the 1930s (Wheatcroft and Davies, 1994). 18 This system was only economically viable under the centralized agricultural economies of the 19 Socialist era.

20

21 As in the rest of NAE, the farm structure was dualistic in many CEE countries with numerous 22 small self-subsistence plots and large-scale farms producing most of the gross output. Soviet 23 agriculture essentially branched into two sectors. The collectivized sector was characterized by 24 state-control, large-scale, reliance on off-farm inputs, mechanization and hired labor and 25 centralized processing and distribution of outputs. This sector was capital intensive and 26 emphasized the management of guantities rather than gualities, because of the lack of price 27 signals for quality, whether judged by processing enterprises or final consumers (Sharashkin and 28 Barham, 2005). Moreover, there was widespread use of agronomic and veterinary expertise 29 (sometimes located within individual farms), which led to the provision of improved varieties of 30 crops and livestock. Collectivized farms were linked to centralized input-supply and product-31 processing facilities. The other branch of Soviet agriculture was the household-managed sector, 32 characterized by micro-scale, lack of state support or inputs, manual labor provided by the 33 household and self-provisioning goals (Sharashkin and Barham, 2005). The latter was authorized 34 by Soviet authorities at the beginning of WWII to fight impending food shortages and quickly 35 spread throughout the country (Lovell, 2003). This household-based sector continued to grow and 36 by the mid-1950s accounted for 25% of the country's agricultural output (Wadekin, 1973). 37 Throughout the Socialist period, the authorities maintained an ambivalent attitude to household

1 producers; their importance to food security was tacitly recognized, yet the government refrained

- 2 from providing any support to household production so as not to encourage any "capitalistic",
- 3 private ownership tendencies (Lovell, 2003).
- 4

5 Specialization was less pronounced in other parts of CEE. For instance, most farming production 6 remained small-scale in Poland although some state farms were initiated when collectivization 7 after 1956 affected the supply of inputs and crucially, the distribution of most output. Unlike 8 Yugoslavia, where a similar semi-collectivization was enforced, the Polish government continued 9 to exercise strenuous but erratic central control over agriculture in an effort to improve 10 performance by balancing and linking the 85% of agriculture that was privatized with socialized 11 sectors of farming. These efforts, which usually favored the larger-scale collectivized sector, were 12 seldom successful and led to inefficient use of new technologies and inputs in this sector, while 13 private producers were starved of both funds and technology and resultant stagnation. 14

15 After transition of the CEE countries to democracy in the early 1990s, the collective and State 16 farm system rapidly broke down, partly because the system became uncompetitive when forced 17 to compete in world markets and partly because the Soviet markets were no longer easily 18 available to the transition countries. State farms were broken into smaller units and/or sold to 19 private investors, which led to a rapid fall in agricultural output in many countries. Large farms 20 remain a feature of many CEE countries, although many of these are now owned by corporations 21 (Lerman et al., 2004). Production stabilized at the lower level but has started to recover in 22 connection to the EU membership. In places like Russia, where household enterprises have been 23 particularly important, small household producers produce nearly all vegetables and potatoes and 24 over 50% of meat and milk products (O'Brien and Patsiorkovsky, 2006) (Table 2-2).

25

26 Insert Table 2-2. Agricultural output by product and enterprise in Russia

27

28 Privatization of agricultural land, as well as upstream and downstream parts of the agrifood chain, 29 was largely completed by 2001, although it is very much an on-going process in some areas (e.g. 30 Poland and Czech Republic). Land privatization has created a highly fragmented ownership 31 structure across the region – less so in the Czech Republic and Hungary due to the restitution of 32 land title exchangeable for investment vouchers or cash and more so in Bulgaria. Lithuania and 33 Romania where the operational structure allows land to be farmed in large viable units. In Poland 34 and Slovenia most of the land continues to be farmed as family type units as in the pre-transition 35 period. The process of privatization has resulted in a bimodal structure in the region with both 36 small and large scale farms especially important in Bulgaria, Estonia and Hungary. Large scale 37 farms are dominant in Czech Republic and Slovakia and small and medium size farms in Latvia,

1 Lithuania, Poland, Romania and Slovenia. In general, however, policies promote consolidation of 2 holdings (OECD, 2001).

3

4 In Albania, the almost complete breakdown of the pre-existing system left the countryside open to 5 fragmentation and a shift to household self-sufficiency in food. This process was evident in many 6 CEE countries during the 1990s as a substantial proportion of the population, often older, newly 7 unemployed and unskilled, retreated from the cities and towns to rural housing where an older, 8 poorer but more secure way of life could be pursued.

9

10 Farm restructuring involved the reallocation of land, labor and capital and included organizational 11 reform such as a move from cooperatives to family farms. In CEE there is now a wide range in 12 the type of farm organization from family farms, private cooperatives, joint stock companies and 13 part-time farmers. The restructuring has led to production efficiency gains but also contributed to 14 the short term production declines seen in the early 1990s. Restructuring was complicated by 15 conditions in the industry pre-reform including the type of farm organization, the degree of capital 16 intensity, the extent of technology use and the degree and speed by which these initial conditions 17 were reformed.

18

19 Crop production in the former crop production in the former USSR increased at about the same 20 rate from 1961 to 1980 as world production. However, production levels remained stagnant in the 21 1980s, before falling about 30% in the 1990s to where production levels in 2000 were the same 22 as in 1961 (Lerman et al., 2003).

23

24

25 2.1.1. Changes in farming and rural population in North America

26 In NA, the proportion of farm and rural populations as part of the total population has declined 27 significantly since 1945 (Fig. 2-4). Mirroring these changes in population have been changes in 28 the agricultural workforce. In 1945, 16% of the total labor force in the United States was 29 employed in agriculture, but this dropped to 4% by 1970 and 1.9% by 2002 (Dmitri et al., 2005). 30 Primary farm operators also begin to work more off-farm jobs during this time period. In 2002, 31 93% of farm households had off-farm income, a three-fold increase since 1945, when 27% of 32 farmers worked off-farm (Table 2-1). The decade of the 1950s saw the largest exodus from 33 farming (Lobao, 2000). During the "Farm Crisis," 600,000 farmers exited farming between 1979 34 and 1985 (Heffernan and Heffernan, 1986); this exit particularly affected the economic base of 35 rural communities in the Midwestern states.

36

37 Insert Figure 2-4. Change in rural and farm populations. 1

2 The shift in the relative percentage of urban to rural dwellers is often perceived as an exodus 3 from rural areas, but during this time the total rural population has held relatively constant (Figure 2-5). It is important to look at the geographical consequences of changes in the farming 4 5 population. For instance, farm size in the US heartland rose by 18% between 1980 and 2000 6 (Paul and Nehring, 2005). Similar strong growth in farm size occurred in the Lake and Northern 7 Plains states but slower growth was evident in some other areas. Farming dependent counties 8 were sprinkled throughout much of the US in 1950. By 2000, more than two-thirds of farming 9 dependent counties were concentrated in the Great Plains of the United States, a giant swath in 10 the middle of the country stretching from the Prairie Provinces of Canada to the panhandle of 11 Texas (Barkema and Drabenstott, 1996; Dimitri et al., 2005). 12

13 Agricultural workers in NA. Since WWII the characteristics of hired farm labor supply have 14 fluctuated widely both in North America and in Europe, with labor supply and demand being 15 dependent on changes in farm structures, changes in consumer preferences, the growing power 16 of retailers and the changing importance of the agricultural sector relative to other industrial 17 sectors in the economies of NAE countries. The agricultural sector has been insulated from some 18 of these changes because of its particular labor force structure, being largely dependent on 19 farmer and farmer-family labor. It is estimated that 70% of the US agricultural production 20 workforce in 2003 were farm operators, partners and their unpaid family members. Hired workers 21 make up the remaining third of the workforce (Runyan, 2000; Vogel, 2003). Along with the 22 variation of the size of the hired workforce among countries, there is also considerable variation 23 between different sectors of agriculture and a concentration of demand for hired workers in 24 vegetable, fruit and horticulture systems (Frances et al., 2005). The seasonality in these sub-25 sectors has encouraged the use of temporary workforces, but the nature of this workforce has 26 itself been in flux for the last fifty years as conditions in the industry have changed. Temporary 27 work in agriculture continues to require minimal skills and be physically demanding with poor pay 28 and poor work conditions.

29

In the US this employment has traditionally been taken up by immigrant populations, which in the past have included Chinese, Japanese, Indian, Pakistani, Mexican and Dust Bowl migrants. The racial division between farm owners and farm workers has persisted; the 1997 US Census of Agriculture found 98% of US farmers were white and 1.5% Hispanic, but 90% of the hired farm workers were Hispanic (Martin, 2002). Hispanics living in rural areas are more likely to be working in lower skilled sectors such as agriculture and because of low wage levels are more likely to live in poverty than non-Hispanic whites (USDA/ERS, 2005).

37

1 Immigrant agricultural populations in the US have been regulated with varying levels of success 2 by means of a number of laws, recruitment schemes and immigration policies including the 3 Immigration Reform and Control Act (1986), which instituted the Special Agricultural Worker 4 program and two guest worker programs (H-2A and Replenishment Agricultural Worker). These 5 were intended to provide a legal work force that could join unions and result with better border 6 control in reducing illegal immigration and creating better working conditions for the legal 7 agricultural labor force (Martin 2002). These objectives have not been realized given that in the 8 first part of the decade: an estimated 50% of all hired workers in crops and livestock farming, 25% 9 in meat processing and 17% in food services are undocumented or unauthorized workers (Wells 10 and Villarejo, 2004; Passel, 2005; Simonetta, 2006). These changes have also been happening 11 in the context of the influence on international migration of the North American Free Trade 12 Agreement (NAFTA), which came into force in 1994, although it did not formally include labor 13 mobility as part of the framework agreement. The economic changes wrought by NAFTA have 14 shifted relative economic power between the signatories to the agreement with differential effects 15 on migration and on relative wage levels occurring among Mexico, USA and Canada (Canales, 16 2000; Avdemir and Borjas, 2007).

17

18 2.1.2 Changes in European farming and rural populations

19 Europe emerged from the 1940s with the sector predominantly consisting of small 'mixed' farms. 20 As technology advanced during the following 50 years the number of farms and the number of 21 farmers and farm workers has declined dramatically. In West Germany, for example, large farms 22 (i.e. those over 2 ha) have declined from over 1,000,000 to less than 400,000, while the number 23 of 'small farms', mainly run by part-time farmers has declined even more dramatically. At the 24 same time the area of farmed land has only declined from 12.8 million ha in 1949 to 11.4 million 25 ha in 2001 (Gov. Germany, 2006), indicating that there has been a dramatic increase in average 26 farm sizes (Figure 2-6). In France the agricultural workforce declined from 8% to about 4% of the 27 total working population in between 1977 to 1997. However, since the reform to the Common 28 Agricultural Policy (CAP) in 1992 this decline in Europe, both in agricultural employment and the 29 number of farms, has slowed down as can be seen in the annual percentage changes in labor 30 force. Different countries and different areas in those countries have followed this pattern since 31 1990 to varying extents.

32

33

Insert Figure 2-6. Changes in the number of farms in West Germany 1949-2001

34

35 The changes in the agricultural labor force differed greatly throughout Europe with a noticeable

36 North-South divide. Southern European countries such as Spain and Portugal lost more than a

third of their labor force between 1987 to 1997 while the average for the European Community for

1 was a 25% reduction. This more dramatic decline reflects the fact that these southern Member

2 States traditionally have a more labor-intensive Mediterranean style of agricultural production;

- 3 approximately 9% of jobs in countries with Mediterranean production systems were associated
- 4 with farming (Eurostat, 1997). Greece has a particularly high rate agricultural employment (about
- 5 20%). Northern European countries such as Denmark and the UK showed average agricultural
- 6 employment figures closer to 3% for 1997.
- 7

In western Europe, individual national migration policy has been gradually subsumed under
general EU agreements, although as exemplified by the expansion of the Union to 27 members,
full legal labor mobility for citizens of EU states may be delayed and circumscribed by a number
of local national regulations. The UK, for example, has developed regulations (e.g. the Seasonal
Agricultural Workers Scheme: SAWS) that respond to the need to attract farm workers for
seasonal and temporary employment, building on a long history of dependence on migrant

- 14 workers both from within and outside the UK (e.g. Collins, 1976). This demand has continued and
- 15 a preference for migrant workers in agriculture remains strong (Dench et al., 2006).
- 16

17 The structure of demand for migrant workers in UK agriculture has been described as dependent 18 on the relationship between growers and retailers; recent changes in favor of retailers has meant 19 a decline in margins for growers. Worsening terms of trade for the growers has been reflected in 20 changing demands made of the workforce, which include more demanding working practices and 21 lower wage rates. The characteristics of the workforce desired by the growers changed 22 accordingly with greater premium put on reliability and the capacity and willingness to accept hard 23 work and lower wages. Growers report that foreign nationals have provided these characteristics 24 more readily, possibly due to their relative lack of security and greater vulnerability and the 25 attraction of high earnings relative to home-country wages and immigration/work permit status 26 (Rogaly, 2006; Frances et al., 2005).

27

28 The accession of CEE countries from 2004 to 2007 has changed the supply and character of 29 migrant labor to western European agriculture and to southern EU states such as Greece 30 (Kasimis and Papadopoulos, 2005). Progressive opening of labor markets in western Europe for 31 workers from the new EU states has offered migrants a greater range of work and increasing 32 confidence in asserting employment rights and some evidence has been forthcoming of possible 33 shortages in the supply of seasonal agricultural workers from these sources (e.g., Topping, 34 2007). These changes have their own cascading effects illustrated by the re-focusing of the 35 SAWS scheme in the UK to relate primarily to workers from Romania and Bulgaria who can only 36 obtain work permits in the UK for agricultural labor. These two countries are the latest to join the 37 EU; most western EU members states (including the UK) have imposed transitional restrictions

1 on the movement of workers to their economies. In turn, there is some evidence that

2 improvement in the economies of new EU member states, in addition to the movement of workers

3 from those states to more developed EU states, has created opportunities for migrants from

4 Russia, Ukraine and Moldova and other former USSR states, some of whom are available for

5 work in the agricultural sector (Patzwaldt, 2004).

6

7 The changes in CEE are more complex as collectivization greatly reduced the number of farming 8 units in some countries (e.g. E. Germany and Czechoslovakia) but not others (e.g. Poland). 9 Following the demise of collectivization, there has been a variable re-allocation of land to former 10 owners resulting in fragmentation of the farming units, which has been followed by a re-11 amalgamation of the small units to create more financially viable enterprises (Bouma et al., 1998). 12 An underlying factor in most transitions was the situation of the land and credit sectors, which 13 together determined the ability - and sometimes the identity - of new landowners and farm-14 workers during the processes of land restitution and business privatization. In some countries, 15 such as the Czech Republic, Slovenia and much of Poland, viable private farming businesses 16 emerged quickly in the hands of families or companies. In Russia, Belarus and the Ukraine, with 17 their much longer period under communist leadership and only partial acceptance of market-18 oriented systems, structural transformation in the countryside was slow and patchy, despite 19 harsher economic conditions.

20

21 Despite the general trend observed across Europe for a decline in farm numbers, increase in 22 farm size and laying-off of farm workers, some countries have seen a recent change in emphasis 23 towards developing new on-farm enterprises, expansion into higher value-added crops and 24 engagement in environmental schemes. These activities have actually resulted in an increase in 25 agricultural labor in countries such as Denmark and Greece. Similarly, the recent rise in 26 consumer demand for organic produce has seen an increase in labor in this part of the farming 27 sector to meet needs of labor intensive operations and provide the necessary technical support. 28 For example, data for Denmark has shown that conversion to organic farming has lead to a 38% 29 increase in labor costs. A small increase in job creation in the agricultural sector is also resulting 30 from the increase in agrienvironment schemes such as those being implemented in the UK.

31

The contribution of women to the agricultural workforce largely reflects the overall declining trend in farm employment in the European region. Overall, women make up more than one in three of the European agricultural workforce. However, women make a greater contribution to the agricultural labor force in Southern European countries than Northern, with the exception of Finland. In France, fewer farmers' wives now work on the farm, approximately half in 1997, as opposed to three-quarters in 1979. Part-time work is also less widespread in Northern European

1 countries compared with southern Europe. This high level of part-time employment in southern

- 2 Europe is associated with the greater number of seasonal activities in this region and is reflected
- 3 in the employment of both men and women, but is generally more common among women.
- 4

5 Across the EU, women have lower overall labor force participation rates compared to men, higher 6 levels of participation in part-time work, higher rates of unemployment and lower wages (nearly 7 25% below those of men) (Daly, 1991). Part-time work is by and large a female phenomenon; 8 85% of the part-time workforce in the EU is female. Non-standard employment (zero hour 9 contracts, casual and seasonal work, temporary work, home working and unpaid family work) 10 account for a disproportionately high share of women's employment. In a majority of EU member 11 countries, at least 10% of the female labor force is in temporary employment with the highest 12 rates in the Iberian countries and Greece. Outwork and homework are almost exclusively 13 performed by women. In the more marginalized areas of the EU, two different developments are 14 affecting farm women. On the one hand there is noticeable out migration, especially of young 15 women, particularly in areas where a strong patriarchal culture coexists with difficult working and 16 living conditions, e.g., Spain and Italy; on the other hand, there is also an increase in the number 17 of female-headed farms (Spain, Portugal and Italy) (Fonte et al., 1994). Women provide safety 18 nets where male outmigration has become a dominant feature. In these areas, women adjust 19 farming to reflect the reduced availability of labor (e.g. smaller areas farmed, conversions to 20 extensive farming, greater emphasis on subsistence, cooperatives, and agrotourism) and receive 21 remittances from their spouses.

22

In CEE countries women are mainly employed as low-skilled workers. As in North America, farm
household income in Europe is increasingly from off-farm salaries. The reduction in agricultural
employment has, therefore, had a generally greater negative effect on female employment.

26

Rural women and poverty in the EU. Since a key trend in Europe is concentration (regional, sectoral and among firms), the division between the richer and poorer countries and the more and less prosperous regions is expected to deepen, as are the divisions between women. Within the EU, large regional imbalances occur. Portugal had the highest incidence of poverty followed by Spain, Ireland, Greece and the United Kingdom (Table 2-3). In four out of the six countries where poverty rates are reported by economic activity of the household head, they are higher for farmers than for any other group (Denmark, Germany, the Netherlands and Portugal).

- 35 With the exception of the Netherlands, female-headed households have higher poverty rates than
- 36 male-headed households, with the highest incidences of poverty among female-headed
- 37 households occurring in the UK, Ireland, France and Spain (Table 2-3). Several countries also

1 have an unequal ratio of poor men to poor women. For example, in Germany and the UK there 2 are 120 to 130 poor women per 100 poor men. In Italy and the Netherlands the ratios are nearly 3 equal, while in Sweden the ratio is reversed, with fewer poor women (90-93 women per 100 4 men). The existence of strong family ties (Italy), high rates of female employment (Sweden) and a 5 strong system of social assistance (the Netherlands) appear to influence these ratios positively 6 (UN, 1995). In general, rural women constitute one of the major groups most vulnerable to 7 poverty in the Western European population – as members of poor farm families, as female 8 heads of household and as off-farm workers (Borjas and de Rooij, 1998). 9

10

Table 2-3. Poverty rates per household group as a percentage of national poverty rates

11

12 2.2 Farm Policies and the Development of NAE Agriculture

13 Farm policies have played a major role in the transformation of the agricultural sectors in Western 14 countries during the last six decades and clearly contributed to the rapid adoption of new 15 technologies and to dramatic increases in output and productivity. The agricultural legislation and 16 policies of most Western countries during the past fifty years have had two underlying themes. 17 One is to provide farm families with incomes equivalent to those in other segments of society; the 18 second is to ensure an adequate and safe food supply for all the people in the country. To these 19 ends a complex combination of measures has been produced, which at one end of the spectrum 20 has attempted to keep small-scale farmers on the land and at the other has encouraged the 21 consolidation of holdings into efficient mechanized units. Quotas and tariffs barriers have been 22 used to protect local production from foreign competition. Price supports, production subsidies 23 and supply controls have all been used to raise minimum family incomes while meeting some 24 government budget constraints (Stanton, XXXX).

25

26 **2.2.1 US farm policy: A legacy of the Great Depression**

The US farm policies implemented after WWII were designed and tried during the Great Depression. As part of the Great Depression, falling prices of agricultural products gripped all the rural areas, prompting the federal government to intervene into agricultural markets to support farmers' incomes, stabilize prices and guarantee cheap food to low income populations (Dmitri et al., 2005). The most important instruments were production controls and government loans.

32

33 Beginning with Franklin Roosevelt's New Deal in 1933, the solution to rapidly falling farm incomes

34 was primarily price supports, achieved through dramatic reductions in supply. Supply controls for

35 staple commodities included payments for reduced planting and government storage of market-

36 depressing surpluses when prices fell below a predetermined level. For perishable commodities,

37 supply control worked through a system of marketing orders that provided negative incentives for

1 producing beyond specified levels. In these farm programs were the seeds of later food 2 programs, including food stamps, commodity foods and school lunch programs. The combination 3 of price supports and supply management functioned as the general outline of Federal farm policy from 1933 until the present and continues to figure in current debates, although the 4 5 mechanisms and relative weights of the policies' components were modified by successive farm 6 legislation. In some years, notably during World War II and postwar reconstruction and again 7 during the early 1970's and mid-1990's, global supplies tightened sharply, sending demand and 8 prices soaring above farm price supports and rendering acreage reduction programs 9 unnecessary. But for most of the period, repeated cycles of above-average production and/or 10 reduced global demand put downward pressure on prices keeping the programs popular and well 11 funded. Continued public support for direct intervention after World War II arose for different 12 reasons. The low prices and consequent low farm incomes of the 1920s and early 1930s resulted 13 from surpluses created by sharply reduced global and domestic demand, beginning with Europe's 14 return to normal production after World War I and followed by the international economic 15 depression of the 1930's. In contrast, surpluses following World War II resulted from rapidly 16 increasing productivity, exacerbated by continuing high price supports that kept production above 17 demand.

18

The apparent success of production controls and price supports in raising and maintaining farm 19 20 incomes by the mid-1930's, made a continuation of these policies publicly acceptable. 21 Nonetheless, intense debate between proponents of high price supports and those who believed 22 farm prices should be allowed to fluctuate according to market demand continued from the mid-23 1950s to the mid-1960s. The debate was set in the context of large surpluses, low prices and 24 efforts led by the Eisenhower administration to return the US economy and government 25 bureaucracy to pre-New Deal, pre-World War II structures. Out of the debate—between 26 advocates of very high price supports and mandatory production controls and those who wished 27 to end direct government market intervention—came a compromise for farm policy. The Food and 28 Agriculture Act of 1965 made most production controls voluntary and set price supports in relation 29 to world market prices, abandoning the "parity" levels intended to support farm income at levels 30 comparable to the high levels achieved during the 1910's. A system of direct income support 31 ("deficiency") payments compensated farmers for lower support prices. Some exports programs 32 aimed at concessional prices and food aid programs (PL 480) were implemented during the 33 1950's and 1960's in addition to programs already in place to promote exportations in order to 34 deal with a part of excess output. 35

The debate over price supports and supply control recurred with enough intensity to divert the direction of policy in the mid- 1980s. The new setting was the farm financial crisis and its

1 aftermath, along with efforts by the Reagan presidency to place the American farm economy on a

2 free-market footing. This time, with steadily increasing government stocks of program

3 commodities and Federal budget deficits at record levels, the argument against continuing

4 expensive government support of the farm economy gained support. At the same time, the farm

5 crisis began to undermine some of the farm sector's confidence that domestic price supports and

6 production controls were a very effective way to secure US farm income in a global economy.

7 Supported US prices reduced international marketing opportunities and increasing global supplies

8 undercut domestic production control efforts. Farm legislation passed in 1985 and 1990

9 maintained the traditional combination of price supports, supply controls and income support

10 payments, but introduced changes that moved farmers toward greater market orientation i.e.

11 lower price supports, greater planting flexibility and more attention to developing export

12 opportunities for farm products. Also was introduced in the 1985 Farm Bill environmental cross

13 compliance measures in order to address specifically issues of soil erosion and conservation of

14 humid areas. This Farm Bill also reintroduced direct subsidies to farm exports: Export

15 Enhancement Program (EEP) and Targeted Export Assistance (TEA).

16

17 The stable economic development provided by farm programs in conjunction with rapid 18 technological development resulted in rapid adoption of new and improved technologies on 19 farms, relatively heavy investments in non-farm produced inputs, increased production efficiency 20 and a rapid rate of growth in aggregate production capacity which exceeded aggregate demand 21 (Cochrane, 1987).

22

23 There are several shortcomings of these farm programs. First is the failure to understand the 24 structural excess capacity problem confronting commercial agriculture during the period between 25 the end of the Korean War and the increase of the demand for agricultural exports at the 26 beginning of the 1970s. This problem was largely understood as a temporal one. That led to 27 various weaknesses in the farm programs: for instance, unwillingness to impose strict production 28 controls and the tendency to impose production controls over only the commodity in most serious 29 oversupply while permitting the released resources to shift into the production of other 30 commodities. This last weakness was not seriously addressed until the 1980s. Another important 31 shortcoming of the farm programs was the almost complete reliance on acreage controls as a 32 means of controlling supply which induced the substitution of fertilizer, pesticides, machinery and 33 power for land and labor, contributing to the land and water pollution of modern agriculture 34 (Debailleul, 2000). In addition, while acreage diversion was also considered as a means to 35 reduce the soil erosion, farmers tended to divert the less productive parts of their land and to 36 intensify the agricultural practices on the most fertile part of their land, often the most vulnerable 37 to the erosion. The farm policy was supposed to protect farmers against sharp declines in

agricultural prices and in the same time to contribute to provide consumers with declining prices
for food, what was possible due to the improvement in farm productivity. But experience shows
that in periods of rapidly increasing farm prices like during the period 1972-1975, consumers were
not protected against the rise of food prices.

- 5
- 6

2.2.2 Canada: A bipolar farm policy

7 In the five decades following WWII, a highly complex set of programs and institutions were 8 implemented as Canadian farm policy. This uncommon situation was due to two reasons. First, 9 the federal government as well as provincial governments both have the jurisdiction to intervene 10 in the agricultural field, so some provinces, like Quebec, have adopted a set of farm programs in 11 the last few decades. The second major reason was the bipolar structure of Canadian agriculture: 12 an export-oriented western agriculture devoted to grain and oil-seed crops and a domestic-market 13 oriented agriculture in Ontario and Quebec specialized in dairy, poultry and egg production. In these latter systems, supply management and border protection have been implemented as 14 15 instruments to adjust the supply to the domestic demand. Beginning in the 1930s, marketing 16 boards were implemented in the western provinces; their monopoly on marketing grain outside of 17 the country was considered the best way to assure good prices for farmers. However, during the 18 1950s and 1970s some other programs were implemented, including a program to subsidize the 19 transportation of grain from Prairies to the central and eastern provinces and the implementation 20 of minimum prices for several crops.

21

22 During the 1990s, the federal government undertook a drastic reform of its farm programs.

Because of budgetary deficits, combined with trade liberalization and free-trade agreements, the legitimacy of such programs was questioned. Due to budgetary constraints, some programs were phased out and the direct support of farm price programs was abandoned in favor of programs which supported the net average farm income, thereby decoupling farm payments. The supply management programs have been maintained but the future for these programs is still uncertain.

28

29 **2.2.3 Common Agricultural Policy and the building of a single market**

30 As with North American agriculture, European agriculture was greatly affected by the economic 31 crisis of the 1930s. After WWII, most Western European countries pursued protectionist policies 32 in order to increase self-sufficiency and reduce their agricultural trade deficits. As a consequence, 33 food prices were maintained at a high level. Production responses to high food prices differed 34 from country to country. In several countries, the agricultural sector began to modernize and 35 become more competitive, while in other countries, agricultural structures were still inefficient, 36 leading to greatly different agricultural systems among those countries working to form the 37 European Community.

The implementation of Common Agricultural Policy (CAP) was supposed to be divided in two periods; the period from 1958 to 1970, the "transitional period" was supposed to experiment with new instruments and the "permanent period" beginning in 1970 was devoted to the achievement of a single agricultural market. Actually, the transition to the permanent phase was completed in 1968.

6

The CAP was designed with several different objectives, including increasing agricultural
production through the development of technological progress as well the efficient use of factors
of production, in particular labor; ensuring equitable standards in living for farm people particularly
through an increase of personal income; stabilizing markets; securing the food supply and
ensuring reasonable prices for consumers. This domestically oriented farm policy was based on
three major principles;

13

- A unified market in which there is a free flow of agricultural commodities within the EEC;

- Product preference in the internal market over foreign imports through common customs
 tariffs; and
- 16

- Financial solidarity through common financing of agricultural programs.

17

18 Thus, individual nations were supposed to gradually leave their decision-making power in agricultural matters both at the domestic and international levels in the hands of the Community. 19 20 Decisions made in Brussels were to be applicable equally to all member states. Today the CAP's 21 main instruments include agricultural price supports, direct payments to farmers, supply controls 22 and border measures. Major reform packages have significantly modified the CAP over the last 23 decade. The first reform, adopted in 1992, began the process of shifting farm support from prices 24 to direct payments. The 1992 reforms reduced support prices and created direct payments based 25 on historical yields and introduced new supply control measures. These reforms affected the 26 grain, oilseed, protein crop (field peas and beans), tobacco, beef and sheep meat markets. The 27 second reform, "Agenda 2000" began in 2000 in preparation for EU enlargement. Similar to the 28 first CAP reform, Agenda 2000 used direct payments to compensate farmers for half of the loss 29 from new support price cuts. Agenda 2000 reforms focused on the grain, oilseed, dairy and beef 30 markets. 31

The most recent reforms (begun in 2003 and 2004) represent a degree of re-nationalization of farm policy, as each member state will have discretion over the timing and method of implementation. The 2003 reforms allow for decoupled payments—payments that do not affect production decisions—that vary by commodity. Called single farm payments (SFP), these decoupled payments will be based on 2000-02 historical payments and replace the compensation payments begun by the 1992 reform.

1

2 When member states implement the reforms, compliance with EU regulations regarding

3 environment, animal welfare and food quality and safety will be required to receive SFPs.

4 Moreover, land not farmed must be maintained in good agricultural condition. Coupled payments,

5 which can differ by commodity and require planting of a crop, are allowed to continue to reinforce

6 environmental and economic goals in marginal areas. The CAP budget ceiling has been fixed

7 from 2006-13; if market support plus direct payments fall within 300 million euros of the budget

8 ceiling SFPs will be reduced to stay within budget limits.

9

10 Domestic price support

Prices for major commodities such as grains, oilseeds, dairy products, beef, veal and sugar
 depend on the EU price support system, although price support has become less important for

13 maintaining grain and beef farmers' incomes under the CAP reforms. The major method of

14 maintaining domestic agricultural prices is through price intervention and high external tariffs.

15 Farmers are guaranteed intervention prices for unlimited quantities of eligible agricultural

16 products. This means that EU authorities will purchase at the intervention price unlimited excess

17 products meeting minimum quality requirements that cannot be sold on the market, which are

18 then stored or sold for export with subsidies.

19 Other mechanisms, such as subsidies to assist with surplus storage and consumer subsidies paid

20 to encourage domestic consumption of products like butter and skimmed milk powder, also

21 support domestic prices. The 2003 reforms, however, cut storage subsidies by 50%. Some fruits

22 and vegetables are withdrawn from the market in limited quantities by authorized producer

23 organizations when market prices fall to specified levels. Reforms have lowered the cost of the

24 CAP to consumers as intervention prices have been reduced. However, taxpayers now bear a

25 larger share of the cost because more support is provided through direct payments.

26 Direct payments

27 While price supports remain a principal means of maintaining farm income, payments made 28 directly to producers provide substantial income support. Compensation payments for price cuts 29 generated by the 1992 reform began in 1994 and were increased for the Agenda 2000 reform. 30 These compensation payments were established on a historical-yield basis for arable crops by 31 farm and required planting to receive a payment. Production requirements have been eliminated 32 in the 2003 reform for both crops and livestock, with payments made to farmers based on the 33 average level of payments received during 2000-02. Direct payments currently account for about 34 35% of EU producer receipts and for an even higher percentage of net farmer income (once input 35 costs are subtracted from receipts).

1 Supply control

- 2 The 1992 reforms instituted a system of supply control that has been maintained through
- 3 subsequent reforms. To be eligible for direct payments, producers of grains, oilseeds, or protein
- 4 crops must remove a specified percentage of their area from production. Small producers are
- 5 exempt from the set-aside requirement. Supply-control quotas have been in effect for the dairy
- 6 and sugar sectors for nearly two decades.
- 7

8 Border measures

9 The CAP maintains domestic agricultural prices above world prices for most commodities. In 10 preferential trade agreements, such as those with former colonies and neighboring countries, the 11 EU satisfies consumer demand while protecting high domestic prices through import quotas and 12 minimum import price requirements. The CAP also applies tariffs at EU borders so that imports 13 cannot be sold domestically below the internal market prices set by the CAP. Although the 14 Uruguay Round of Agreement on Agriculture called for more access to the EU market, market

15 access to the EU's agricultural sector remains highly restricted in practice. In addition, the EU

16 subsidizes the agricultural exports to make domestic agricultural products competitive in world

- 17 markets.
- 18

19 Additional aspects of 2003 reform

20 Important components of the 2003 reform reflect a philosophical change in the approach to EU 21 agricultural policy. For the first time, much of the pressure to reform the CAP came from 22 environmentalists and consumers. The requirement to comply with environmental and animal 23 welfare standards to qualify for the SFP reflects these pressures. Moreover, farmers must meet 24 food guality and food safety regulations for payments to continue. Another important feature of 25 the 2003 reforms is the move from a price support policy to an income support policy through 26 decoupled payments. EU farmers will have more choices in their planting decisions because of 27 decoupled payments. Commodity support prices continue to exist but at lower levels, while direct 28 payments to farmers without requirements to plant a crop are more widespread.

29

30 There is also a marked shift in the way rural development is treated. The 2003 CAP reforms 31 established two pillars in the budget: Pillar I for market and price support policies and Pillar II for 32 rural development policies. In the reforms, a ceiling was imposed on Pillar I spending, whereas 33 Pillar II spending seems open-ended. The intended budget for rural development will more than 34 double over the next 10 years, while the CAP budget for Pillar I may only increase by 1% per year 35 in nominal terms from 2006-13. Moreover, in a concept called modulation, SFP payments greater 36 than 5,000 Euros are reduced by 5%, while farmers whose SFP is less than that are not 37 penalized. The budget funds saved through modulation are transferred to the Pillar II rural

1 development fund. At least 80% of the funds from the penalties will remain in the country where

- 2 the SFPs were reduced and are to be used for rural development purposes.
- 3

4 <u>Policy and Productivity.</u> The increase in agricultural productivity within the EC was very rapid.

5 While increases in the rate of agricultural productivity in the United States appeared in the 1930s,

6 this trend didn't began until the 1950s in the EC and continued in the subsequent decades

7 primarily due to the implementation of CAP. While protectionist policies were employed by EC

8 member countries before the CAP was established in 1962, it has played a fundamental role in

9 increasing the size of supply and the agricultural productivity

10

11 Benefits and shortcomings of farm policies

12 Consumer benefits from price stabilization are lower probabilities of shortages and extremely high 13 prices. A large part of gains in agricultural productivity have also been transmitted to the 14 consumer through a long-term tendency of declining real farm prices. Food processing firms 15 benefited from more stable supplies and prices that resulted in more efficient use of processing 16 facilities and improved management decisions. The agricultural supply industry also benefited as 17 farm programs constituted great incentive for investment and adoption of new technologies. For 18 the same reasons, livestock producers also gain from grain price stabilization and government 19 storage policies.

20

Despite the underlying theme of support for the family farm in both NA and the EU policies, long
run effects promoted larger farms. For instance, higher price supports, benefits, deficiency
payments, disaster payments and directs aids are generally proportional to output or to acreages.
Between 20% and 30% of the farmers are able to capture between 60% and 80% of government
payments in either the US or the EU. For instance, 70% of the direct payments of CAP during the
financial year 2000 went to 16% of EU eligible farmers.

27

28 The results of US and European attempts to dispose of surplus commodities have been 29 particularly damaging to the agricultural sectors of the developing countries. The availability of 30 cheap surplus food from Europe and the US has made it possible for some nations to maintain 31 urban food prices at relatively low levels. This discouraged production by their own farmers and 32 encouraged rural people to migrate to the cities. In addition it made poor nations dependent upon 33 American and European willingness to continue to overproduce agricultural commodities 34 (Bonnano et al., 1991). Moreover, the modernization and intensification of agriculture that have 35 been promoted by these policies has had damaging environmental and social consequences that 36 have not been entirely addressed by reforms.

37

1 2.2.4 Agricultural policies in CEE countries

2 Three broad stages can be identified in agricultural price policy reforms in CEE countries. These 3 began in the early 1990s with the dismantling of administered pricing, production targets and the 4 state monopoly on trade as well as the adoption of price and trade liberalization and limited 5 intervention in agricultural markets. This was followed by an ad hoc reapplication of controls on 6 price and market support and on trade restrictions. By the late 1990s and continuing up to EU 7 accession by many countries in 2004, agricultural policy was dominated by the alignment of their 8 agricultural sectors with that of the European Union, particularly to the CAP and to food hygiene 9 and welfare standards (OECD, 2001). Structural reform was directed to improve overall 10 performance of the agrofood sector such as investment to improve market infrastructure, to 11 modernize plants and equipment and eliminate management inertia, as well as consolidation of 12 holdings to ensure viable farming units which depend on a functioning land and land lease market 13 (Cochrane, 2002)

14

EU support was provided to certain CEE countries for pre-accession restructuring through various
 programs, with the Special Accession Programme for Agriculture and Rural Development
 (SAPARD) being important in agriculture. SAPARD is a 7 year program which started in 2000 and

- 18 allocated two-thirds of its funding program to Poland, Romania and Bulgaria.
- 19

20 In Russia and the NIS, reforms were required in farm-level organization and management and in 21 the development of the physical and institutional infrastructure. Private farming had not developed 22 during the 1990s to any substantial degree and land and rural credit markets remained ineffective 23 as a credible commercial legal system to protect property and enforce contracts remained 24 undeveloped (Virolainen, 2006). However in Russia, there were signs by the 21st century that 25 vertically integrated forms of organizations were emerging. It has been suggested that any 26 productivity gains in Russia in the short to medium term might come more from strengthening 27 vertical ties for production and distribution rather than from real technological or systemic change 28 because of the increasing attractiveness for investment that would result (Liefert et al., 2002). 29

30 In Russia in particular there has been 'a rapid, quite fundamental change in the principles for 31 developing agricultural production' (Virolainen, 2006). The emphasis has shifted from the family 32 farm to supporting large, commercial farm enterprises. These enterprises form so-called 33 agroholding companies, consisting of either a single farm enterprise or a collection of individuals. These agroholdings may also be part of a larger industrial-economic grouping, such as the Alfa 34 35 group, Interros, Lukoil, Metalinvest or Rusagro. These enterprises perform as vertically integrated 36 enterprises ensuring raw material supply to group member companies and may be used to 37 ensure the supply of foodstuffs for the core company's employees.

1

2 The political reforms that began in 1989 shifted the emphasis in agricultural policy toward

3 developing an efficient, productive, export oriented agriculture based on comparative advantage

4 instead of a focus on responding to basic production targets formulated by national plans with

5 their goal of achieving self sufficiency. At the same time the role of agriculture in the post

- 6 communist era declined relative to other sectors that began to achieve a relatively faster rate of
- 7 development (OECD, 2001).
- 8

9 The reforms led to a substantial decline in agricultural production in the Central and Eastern 10 European countries (CEECs).¹ The gross agricultural output fell by between 15 and 30% for 11 these countries between 1989 and 1992 although for both the Czech Republic and Slovenia that 12 followed a brief initial increase of some 10 percent. The decline subsequently moderated for 13 these countries during the remainder of the 1990s and even reversed for the Czech Republic, 14 Poland and Hungary. For Albania, by 1998, output had even reached higher than the 1989 level 15 by over 10% annually (Macours and Swinnen, 2000).

16

17 Political and economic reform in Russia, republics of the Soviet Union and the Newly

18 Independent States (NIS) of the 1990s produced similar consequences for agricultural

19 productivity. Estimates for Russian crop production indicate a drop of 8per cent in productivity

20 overall between 1993 and 1998, while overall agricultural productivity rose in Russia and the

21 Ukraine between 1992 and 1997 but only by 7% and 2% respectively (Liefert et al., 2002). The

22 major changes in Russian agricultural production and trade following transition included a halving

23 of the livestock inventory resulting from a reduction in imports of animal feed. Fertilizer,

24 machinery and fuel use also fell substantially, resulting in cuts in domestic grain yields and

harvest levels. The same applied to the Ukraine as fertilizer output was switched to export supply(Liefert et al., 2002).

27

28 2.3 Changes in Market Structure

Specialization in agricultural production has been accompanied by significant changes in market structure for both agricultural inputs and outputs. Economic power in food and agriculture and thus the power to make decisions about what to produce and where to produce it, has moved toward fewer and fewer transnational firms which are embedded in a web of relationships in food production, from genetics to food retailing (Yoon, 2006). Some view these changes positively as a

¹ The countries that are included under the rubric of the CEECs differ. Some authors restrict the definition to the ten countries that underwent accession to the EU between 2004 and 2007 namely Estonia, Latvia, Lithuania, Poland, Romania, Slovakia, Czech Republic, Hungary, Bulgaria and Slovenia. Others include Albania and the remaining Balkan states, but these are also referred to as the South East European Countries (SEEC). Most of the material here regards the CEECs as to the ten accession countries, unless other countries are referred to specifically.

way to increase efficiency in the food system (Barkema et al., 2001) while others point toward
increased marginalization of farmer and rural livelihoods and negative impacts on communities
(Goldschmidt, 1978; Lobao, 2000; Stofferhan, 2006)

4

In Europe, concentration in the food system started at the retail stage, becoming most obvious during the 1980s and 1990s (Vorley, 2003). In the US, concentration of ownership and control became most visible in the production and processing stages, especially in the poultry sector in the mid-twentieth century. Contrary to European trends, in the US and Canada increased market share by fewer firms occurred in the agricultural input sectors and the food processing stage much earlier than in the food retailing sector.

11

12 Horizontal integration is occurring at all stages of the food system from the genetics to raw 13 agricultural commodities to food retailing. The concentration ratio (CR4), which is a measure of 14 the market share of the top four firms in a particular commodity, has continued to increase during 15 the past decade in the US The largest four processors for all the major commodities now have 16 from 50 to 80% of the market share (Table 2-4 and Figure 2-7) which can indicate decreased 17 competition in the marketplace forcing farmers into a relatively powerless position vis-à-vis 18 suppliers or buyers. Others argue that competition is sufficient for farmers to obtain a fair price 19 (Tweeten, 1992; McDonald et al., 2000). Nevertheless, farmers across the NAE faced with 20 decreasing choices buying agricultural inputs and selling outputs can face a cost-price squeeze 21 that affects their ability to earn a livelihood from agriculture. 22

23 Insert Table 2-4.Concentration in the US and Canadian food industry

24 Insert Figure 2-7. Trends in consolidation in the US food industry from 1990 to 2007

25

The structure of market in agricultural inputs has changed markedly in the last 50 years. For instance, two firms provide most of the fertilizer used today in North America while one firm has a 25% market share for fertilizers in Europe. The seed industry is even more instructive for other inputs. Globally, the seed industry is increasingly driven by NAE based transnational agrifood businesses (UNCTAD, 2006). Four NAE-based transnational companies provide almost 30% of the world's commercially available seeds while NAE accounts for 43% of the commercial seed market globally (Table 2-5).

- 34 Insert Table 2-5. Global seed sales by NAE based companies
- 35
- 36 Many of the changes in NAE were anticipated by the changing nature of the US seed industry,
- 37 the most heavily commercialized in the world. In the 1930s, over 150 companies formed to sell

1 hybrid maize, but by the mid-1960s, American farmers had essentially abandoned open-

2 pollinated maize varieties with nearly all maize acreage planted to hybrid maize (Fernandez-

3 Cornejo, 2004). Maize provided the kernel of transformation for the seed industry in general.

4 Between 1970 and 2000, small private seed firms essentially vanished, with more than 50

5 acquisitions of seed firms by pharmaceutical and chemical firms (Fernandez-Cornejo, 2004). By

6 the 1980s, the maize seed market was dominated by two firms and by the late 1990s, over 90%

7 of cotton seed, 69% of maize seed and nearly half of soybean seeds were sold by the four largest

8 firms in each crop. The same privatization trends are seen in Europe and as a consequence, the

- 9 private sector is becoming increasingly important.
- 10

11 One of the more striking features of industry changes in the last two decades has been the

12 convergence of ownership between agrochemical and seed/genomic firms. This strategy has

13 worked well "to better control and market proprietary lines of chemicals, genetic technologies and

14 seeds, often sold in a single-bundled package" (UNCTAD, 2006). These bundles can be

15 attractive to farmers and farmer managers as a purchased management tool. However, such

16 packaged bundles can reduce flexibility of on-farm management strategies for pests and weeds,

17 as well as implementation of novel consumer-driven production systems and increase reliance on

- 18 purchased inputs (c.f. Hendrickson and James, 2005).
- 19

When farmers sell their products, they also face highly concentrated markets. In the US less than 10 firms slaughter and process most of the broilers, turkeys, cattle (heifers and steers) and pork in the United States. Many of these are the same firms that operate in Canada. Moreover, the CR4 ratio has been increasing for all livestock processing – particularly steers and heifers and hogs – since 1980 in the US (USDA, 2000) Livestock production in Europe is less consolidated than in North America. For instance, the top 10 integrated broiler producers in Europe account for only 36% of production compared with 66% in the US.

27

The grain trading sector worldwide is dominated by three NAE based firms (reference). These three players are in the process of rationalizing crushing capacity, closing down some factories and increasing the utilization rate of others.

31

During the 1990s, intensive mergers among farmer dairy cooperatives left only two major US cooperatives, one of which currently produces 33% of the US milk supply. Two of the largest private companies merged to become the largest dairy processor, controlling 30% of the US milk supply (Hendrickson and Heffernan, 2005). Retail consolidation in dairy increased prices for consumers, yet decreased farm gate prices (Cotterill and Franklin, 2001). Across Europe, there has been a process of international consolidation in dairy processing, led by farmer-owned

1 businesses in the race to remain competitive with multinational companies. Concentration in dairy 2 is also a trend in Central and Eastern Europe (Csaki and Forgacs, 2004).

3

4 It is estimated that 60% of retail food purchases in the United States go to the ten largest global 5 food corporations (Lyson and Raymer, 2000). The major food manufacturing countries in Western 6 Europe are France, Germany the UK and Italy (Figure 2-8). Meat, beverages and dairy are the 7 biggest sectors, comprising 20, 15 and 15% respectively of over EUR 600 billion production value 8 in 2001 of (USDA-FAS, 2003). It is Europe's leading industrial sector and third-largest industrial 9 employer and concentration in the sector is relatively low (Table 2-6). 10

11

Insert Figure 2-8. EU-25 Food and drink sector 2001, value of production (EUR billion) estimates 12

13 Insert Table 2-6. Top European food manufacturers, ranked by turnover in 2002

14

15 Another striking feature of the food system in NAE is that the same firms appear in different 16 sectors of the food system, from genetics to processing because of vertical integration. While not 17 a new term, or process, vertical integration has accelerated rapidly in NAE since 1945. Mostly, 18 this process combines the management (but historically ownership) of a series of stages in the 19 food system. Vertical integration leads to supply chain management, which when exercised in 20 non-competitive markets resulting from horizontal integration, replaces the competitive market 21 providing the coordinating function in a competitive system (Hildred and Pinto, 2002).

22

23 We can look to NAE, particularly the US, to see some early examples of vertical integration, e.g. 24 poultry. The poultry industry has now become the prototypical model of industrialized agriculture 25 and is often referred to as a model of the structure that may come to characterize much of US 26 farming in the future (Perry et al., 1999; Hendrickson et al., 2001). Before the 1950s, chickens 27 were raised on more farms in more regions of the US than any other farm animal. The chicken 28 farmer was supported by thousands of local hatcheries, feed mills and processors where chicks, 29 feed and other supplies could be purchased and the birds could be sold. Following the WWII, 30 large feed companies recognized the broiler industry's potential for growth and moved quickly into 31 the production of broilers (Heffernan, 1998; Martinez, 1999; Ollinger et al., 2000). These 32 companies began buying up hatcheries and developing relationships with retailers. By 1960, 286 33 firms were selling broilers (Heffernan, 1972) and the top four firms controlled 12% of the market. 34 By 1998, only 52 firms remained and in 2007 the top four firms accounted for over 58% of the 35 market (Hendrickson and Heffernan, 2007). Today, a typical broiler complex includes breeder 36 farms, hatcheries, feed mills, grow-out farms, processing plants and retail markets. Commercial 37 feed firms became the major consolidators in the broiler industry traveling out 25 to 30 miles in a

circle from the processing plant to the growers' buildings (Heffernan, 1984). The geographical
layout is much the same today except the number of integrating firms and the number of
processing facilities are greatly reduced. These firms have about 250 sets of processing facilities
across the country producing broilers. Very few growers live in an area where two circles of
competing integrating firms overlap. As a result, most growers live in places where they have
access to only one integrating firm.

7

8 Vertical integration has been manifested through the development of food system clusters or 9 integrated food supply chains; both terms connote a direct line of control for a firm from one stage 10 of the food system to another (Barkema and Drabenstott, 1996; Drabenstott and Smith, 1996). In 11 In 1999 three emerging food system clusters appeared to be dominant forces in the food system 12 from genetic material to food manufacturing (Heffernan et al., 1999; Hendrickson and Heffernan 13 2002). These food chain clusters are still major entities in the agrifood system, but have 14 significantly evolved, including mergers and divestments. Other strong firms remain that have 15 likely formed, or will form, new clusters. It is important to note that much movement to reorganize 16 supply chains in the early 21st century, particularly in the fruit and vegetable sector, has come 17 from large, global retailers, all of whom are based in the NAE, especially in Europe.

18

19 One form of vertical integration is the agricultural contract, manifested either as a production or 20 marketing contract. In the US, agricultural contracting covers nearly 40% of the value of 21 agricultural production, up from 11% in 1969 (MacDonald and Korb, 2006). Production contracts 22 exist when an integrating company retains ownership of the commodity as it moves through the 23 chain, with growers receiving a fee for providing labor and/or capital (Sommer et al., 1998). In 24 marketing contracts, farmers retain ownership and use the contract to specify price, quantity and 25 quality of product to be delivered. About 10% of all US farms use a contract of some sort, with 26 almost 50% of large commercial farms involved in contract production (MacDonald and Korb, 27 2006). Contract usage varies among commodities. In 2003, nearly 60% of hogs and almost 90% 28 of poultry and eggs were sold through contract production, primarily production contracts. Crops 29 like vegetables, fruit and rice tend to have higher rates of contracting than corn, soybeans, wheat 30 and sugar beets. Marketing contracts are much more prevalent in crop production while 31 production contracts predominate in livestock production. While contracting can provide risk 32 management for producers, contract farming can also pose risks to social structure when it 33 creates the structural equivalent of factory or piece-rate workers who lose control over decision-34 making or assets; and to family well-being given the contractor grower's asymmetrical bargaining 35 power relationship with integrating firms (Hendrickson and James, 2005; Stofferahn, 2006; 36 Hendrickson et al., 2008).

1 2.4 Changes in NAE Cropping Systems Since 1945

2 2.4.1 Changes in soil AKST and use since 1945

3 Soil is one of the basic natural resources and is vital for agricultural productivity across NAE, a 4 region with extensive amounts of productive soils. Knowledge of soil is critical to agriculture, 5 especially in low input agricultural systems, such as organic agriculture. Traditionally, knowledge 6 of soil type on a particular farm passed from one generation of farmer to the next and traditional 7 practices of manure application were followed to improved soil productivity. Since the end of the 8 WWII, development and availability of soil analytical techniques has led to a more science-based 9 approach for increasing and conserving soil productivity.

10

11 Soil testing facilities have been developed largely in response to issues related to agricultural 12 productivity. Concerns such as nutrient depletion and acidification led to the establishment of soil 13 testing programs at publicly-funded institutes in the late 1930's to the early 1950's. These 14 provided services to help farmers make decisions about fertilizer and lime applications (e.g. 15 Olsen et al., 1954; Mehlich, 1984). In recognition that saline and alkali soil conditions reduced the 16 value and productivity of considerable areas of land in the US, the United States Salinity 17 Laboratory was created in 1947 (Richards, 1954). During the 1970's soil testing expanded, 18 providing additional tests and services in response to renewed emphasis on the efficient use of 19 agricultural inputs such as fertilizers, largely due to the energy crisis and an increased public 20 concern for the protection of water quality and prevention of pollution from chemical fertilizers. 21 Similarly, increased ability to analyze trace elements allowed recommendations to be given to 22 farmers concerning shortages, excesses or trace elements. 23

24 Until the 1980s, there was substantial investment by governments in soil science research, 25 predominantly focused on soil productivity and aimed to increase agronomic yields. However, 26 since the 1980s, this investment has decreased and the institutional knowledge about analytical 27 methods for soils, water and plant material is lodged more and more in the US private sector. 28 (Prunty, 2004). In contrast, following shrinkage in the 1980s, soil science is re-emerging as vital 29 component of agricultural and environmental sciences in Europe, with a current EC strategy and

- 30 publicly-funded research program to protect Europe's soils from erosion and degradation and
- 31 ensure sustainable use (EC, 2006).

32

33 Extensive and detailed mapping of US and European soils was initiated following World War II

34 and today has evolved into comprehensive, digital national maps of soils in many countries

- 35 across NAE. This has resulted in more appropriate land use based on soil classification (e.g.
- 36 rough pasture, arable land). Over the last three decades, there has been an evolution to,
- 37 assemblage and development of long-term soil resource assessment technologies that are land

or ecological. This is especially applicable to forestry management in both the US and Canada
(Hills, 1952; Smalley, 1986; O'Neil et al., 2005). Since 1945, there has been development and
refinement of soil and water conservation technologies (USDA-SCS, 1955; USDA, 1957; Troeh et al., 1980; USDA-NRCS, 1996; Tibke, 2002; Weeies et al., 2002).

5

6 There is greater appreciation of the value of manures and sludge for providing both nutrients and 7 organic matter to soils used for crop production. Proper application rates have been increasingly 8 understood to minimize movement of nutrients off site, which could cause adverse ecological 9 effects e.g. eutrophication elsewhere. Organic systems are sometimes thought to lead to 10 increased manure run off, due to their increased reliance on organic fertilizers (Stolze et al., 11 2000). However, studies from the UK at least (Shepherd et al., 2003) indicate that awareness of 12 the problem has largely alleviated it. In addition, the reduced excess of nutrients on organic farms 13 can have beneficial effects on water quality via reduced nutrient run off (Shepherd et al., 2003).

14

15 2.4.2 Changes in cropping systems in NAE

16 Increased productivity is the key change in NAE cropping systems. Arable crops, especially the 17 major commodity small grain crops, such as wheat, barley and maize along with the oilseed crops 18 (soybeans, oilseed rape, sunflower), the legumes (peas, beans) and root crops (sugar beet, 19 potatoes) have formed the backbone of crop production in the NAE while fruits and vegetables, 20 with their great range of crops, from lettuces to apple trees, make up the remaining production 21 sector. Over the last 50 years there has been some change in the proportions of different crops 22 grown, such as the increase in oilseed production, but the overall area of agricultural land has not 23 increased during this period. In fact, data from FAOSTAT indicates an approximately 10% 24 reduction in agricultural lands for the EU(15) and for the USA between 1961 and 2003, with a 25 lesser decline in Canada. In the CEE, the amount of land in agricultural use initially remained 26 constant after the end of the Socialist era, although today there seems to be increase in the 27 amount of uncultivated land across the region, which by certain estimates amount up to 30% in 28 some countries (OECD, 2001).

29

30 Insert Figure 2-9. Wheat yields in 10 NAE countries.

31

Despite stable or declining arable land, production of virtually all crops has increased significantly (Fig. 2-9), in some cases more than doubling, in NAE during this time. The increases in production, particularly in Western Europe and North America, have been stimulated by the increasing demands for food from the rising NAE population during the last 50 years. This was particularly important in the 1950s, as there were real food shortages in many countries in the years following World War II. Post-war agricultural conditions in the Soviet Union were dire, with 1 famine conditions in 1946-47 (Medvedev, 1987) and per capita production of grain and meat

2 below 1913 levels. These conditions were due to the direct destruction of farming and food

3 distribution resources in CEE. In the western NAE, the continued momentum to increase

4 production was encouraged by the politically driven agricultural financial support systems in

5 Western Europe and USA (see 2.2), aimed at ensuring the continued viability of the rural

6 economy. The Soviet Union turned to centralized planning, collectivization and ultimately the

- 7 Virgin Land Program, when 36 million hectares in dry areas were ploughed and sowed in the late
- 8 1950s to increase grain production.
- 9

10 Although production lagged behind that in Western Europe and most of the world, CEE farms 11 steadily increased arable production from 1945 to 1980 (Lerman et al., 2003). In the Soviet 12 Union, by the mid-1950s cereal production exceeded the 1913 level and between 1950 and 1970 13 rose by more than 2.3 times to 186.8 million tonnes (Narodnoe khoziaistvo, 1971). After the 14 breakdown of the collective farm system, there was a rapid decline in productivity starting in 15 1991, with large areas of arable land essentially left unfarmed. For instance, up to 40% of arable 16 land in the Baltic States was abandoned in the 1990s, with a similar decrease in agricultural 17 output (Lerman et al., 2003). This in turn led to a 38% decrease in per capita income in rural 18 areas. Far less land was abandoned in Hungary and Poland where markets were more robust. 19 There has been a recovery in production in most CEE countries, but production levels in the 20 smaller countries are still only at 1960s levels (Lerman et al., 2003). Farmland in the larger 21 countries, especially in eastern Germany, Hungary and Poland, was seen by investors from 22 Western Europe as having good potential for further increases in production by applying modern 23 technology and having relatively low labor costs. Some areas of arable farmland in these 24 countries are increasingly owned by Western consortia. Most CEE countries are now members of 25 EU-27 and EU management of CEE grain production is expected to increase it by around 25%, 26 an increase of some 50 million tonnes. This increase has already become apparent in places like 27 eastern Germany where yields of all grains now equal or exceed those in Western Germany.

28

29 Another factor in increased crop production in NAE has been the increasing demand for meat, 30 (see discussion in 2.5) coupled with the increasing intensification of meat production often 31 resulting in intensive housed systems, requiring large quantities of grain, protein and oilseeds. 32 Increased crop production was facilitated by and to some extent stimulated by, the development 33 of new cultivars and technologies aimed at increasing yields and decreasing yield threats from 34 biotic and abiotic factors (e.g. pest and disease attack, weather impacts on crop growth and 35 harvesting). Research on crop production inputs and the dissemination of the information to 36 farmers has played a key role in providing tools for farmers to increase their production. The 37 major contributors to these yield increases are:

1	1.	breeding of higher yielding cultivars and the adoption of high-yielding hybrid seeds for			
2		planting;			
3	2.	increased availability of fertilizers and increased knowledge of how to use them;			
4	3.	development of new pesticides to control weeds, pests and diseases;			
5	4.	better understanding of the biotic and abiotic factors constraining yields, leading to			
6		optimizing agronomic practices (e.g. sowing dates, plant densities, fertilizer timing);			
7	5.	improvement in machinery design and range to assist optimization of crop production			
8	6.	increased use of irrigation;			
9	7.	enhanced mechanisms for technology transfer, such as development of national			
10		agricultural advisory systems; and			
11	8.	the delivery of information by the private sector, e.g. on the use of their products, it is as			
12		an important a source of information to farmers as is the public sector extension services			
13		and related public sector support.			
14	These	advances are summarized in data from the long-term Rothamsted wheat experiment			
15	(Figure	(Figure 2-10), which clearly shows the role played by a number of different inputs in delivering			
16	higher yields.				
17					
18	Insert Figure 2-10. Yield responses on the Broadbalk winter wheat experiment at Rothamsted				
19	Research Station, UK since 1843 in relation to the introduction of novel agronomic practices.				
20					
21	While increasing productivity has been the main goal of the last 60 years, there is evidence of				
22	little increase in yields since 2000, suggesting that farmers may have reached economically				
23	optimal yield achievable with the cultivars available at the present time and in the current				
24	economic and policy atmosphere. Similar responses can be identified for other major arable				
25	crops.				
26					
27	As well as the direct contribution of science and technology to increases in yields, the				
28	establishment of effective technology transfer systems to ensure that the 'new' advice was				
29	conveyed to the farmer users was also of great importance. Such advisory systems have				
30	sometimes involved the public sector (government sponsored advice) and sometimes the private				
31	sector. In the US, development of an extensive public knowledge transfer system through the				
32	cooperative extension service of land-grant universities contributed greatly to agricultural				
33	productivity (Hildreth and Armbruster, 1981). However, today there is a transition from publicly				
34	supported technology transfer systems to private technology transfer systems (see Chapter 4).				
35	The former tended to be more holistic in approach while the latter has primarily been associated				
36	with commercially viable products, whether new agrochemicals or new cultivars (c.f. Fuglie et al.,				
37	1996).				

1

2 2.4.3 Increasing cropping systems productivity through inputs 3 As noted above, changes in outputs of cropping systems across the NAE reflect changes in 4 production and management systems that utilize inputs such as mechanization, labor, seeds, 5 genetics, nutrients and irrigation, in new and different ways. 6 7 2.4.3.1 Mechanization The last half of the 20th century saw dramatic changes in farming operations because of 8 9 increased mechanization. The introduction of the diesel engine, compact combine harvesters and 10 sophisticated hydraulic and transmission equipment has reduced labor requirements in weeding, 11 harvesting and threshing (Park et al., 2005). 12 13 Improved efficiency and increase in machine scale may explain some of the decline in the 14 number of harvesters and threshers observed in the USA in the 1960s, which has maintained a 15 plateau since the mid-1970s. In contrast data for Europe showed a large increase in uptake 16 during the 1960s and 1970s showing a continued investment in this machinery and reaching a 17 peak in the number of machines during the mid-1980s. 18 New developments in mechanization also relate to precision agriculture, which seeks to improve 19 20 performance by mapping the specific nutrient needs or levels of pest damage to growing crops in 21 such a way that differing treatments may be provided within the same field (e.g. McBratney et al., 22 2005). By providing precise information about variable field conditions, precision agriculture can 23 substitute knowledge for chemical inputs such as fertilizer and pesticides (Bongiovanni and 24 Lowenberg-DeBoer, 2005), while improving management techniques for environmental and 25 economic goals. It is often - but not necessarily, associated with the incorporation of new 26 technologies (e.g. global positioning service or electronic sensors) into varying agricultural 27 machinery (McBratney, 2005). Precision agriculture can benefit the environment by reducing 28 excess applications of inputs and reducing losses due to nutrient imbalances or pest damage, but 29 the necessary technology is at present best suited to relatively large farms so that the capital cost 30 of investment can be spread over a large output, primarily in places like the United States and 31 Canada (Natural Resources Canada, 2006). 32 33 In some CEE countries, the collectivization of agriculture tried to exploit economies of scale, 34 particularly in the fields of mechanization and in the use of agrichemicals. In the Soviet Union, 35 productivity advances were largely achieved by government-mandated and government-36 sponsored industrialization of agriculture. Thus, between 1950 and 1974 the production of 37 plough-tractors increased by 79% to 218,000 units per year and the production of cereal
harvesters increased by 91% to 88,400 units per year. However, investment in machinery was
 limited by lack of state resources for collectivized farms and lack of access to credit for private
 landowners (Kovach, 1999).

4

5 Another agricultural sector that has seen significant mechanization advances is glasshouse 6 production, which is used for high value crops such as tomatoes and ornamentals. The use of 7 glasshouses and other structures enable horticultural crops to be protected from frost, irrigated as 8 required, protected from pests and disease and brought to market out of normal season in first 9 class conditions. Since 1950 growing sophistication resulting from the use of automatic 10 temperature, humidity and ventilation controls has improved performance and reduced the labor 11 requirement. However, as transport becomes cheaper protected crops face growing competition 12 from imports grown in climates that are more favorable. One response to this has been to devise 13 cheaper ways of protecting crops, notably the use of plastic and polytunnels.

14

15 Mechanization of agriculture allows more timely completion of tasks and reduces labor

16 requirements, thereby increasing productivity, avoiding labor shortages and eliminating

17 unpleasant jobs. It also allows cropping of lands previously too difficult to cultivate. But

18 mechanization also has disadvantages; including loss of jobs, costs of maintenance and fuel as

well as elimination of hedges and expanded field size to accommodate larger equipment (Wilsonand King, 2003).

21

The main drivers of mechanization have been the desire for greater productivity in the 1950-60s (European Environment Agency, 2003), the reduction of the labor leading to an increased quality of life and increased economic needs. Moreover, AKST has provided mechanisms for the achievement of engineering improvements for agricultural and forestry equipment and more sophisticated handling of milking, as well as allowing for the development of computer management in animal feeding. Thus, mechanization is correlated with field size across NAE, changed management systems and increased flexibility of land use and management. All of

these changes have had very important economic, environmental and social implications.

30

31 2.4.3.2 Plant breeding, seeds and genetics

A key contributor to productivity increases in crops has been the major advances in crop breeding since the late 1930s, including the development of hybrid crops, cell fusion, embryo rescue and genetic engineering. Many of these new techniques derived from new discoveries in biological sciences and major advances in the fields of genetics (e.g. the discovery of the structure of DNA and the understanding, at the molecular level, of genes as physical entities that could give rise to Mendelian-style inheritance). Post WWII, the study of genetics led to the development of new

techniques to introduce inheritable traits into organisms, a subset of the broad set of methods known as biotechnologies designed to adapt living things for the production of useful products. These new techniques include genetic engineering (where a genetic "cassette" manipulated in vitro and containing a recombinant DNA gene for a desired trait is inserted into the organism) and marker assisted breeding (where the use of known "marker" sequences associated with a desired trait are used to determine if the desired trait is inherited in offspring from conventional breeding).

8 The new techniques of genetic engineering and marker assisted selection have yet to result in 9 improved cultivars with higher yields and other quantitative traits controlled by many genes 10 simultaneously. The current seed varieties available in NAE for most crops, including those for 11 increased yield, have been developed largely through conventional breeding where plants with 12 desired traits are cross-bred and the resultant offspring contain the desired trait. Commercial 13 hybrids are produced by the conventional breeding of two carefully chosen different high-quality 14 true-breeding parental lines to yield progeny that themselves do not breed true, but that in 15 combination give good yield (show vigor) and exhibit superior qualities, above those of traditional 16 (open pollinated) varieties.

17

18 Hybrid varieties generally have increased vigor over their open-pollinated counterparts. With the 19 growth of mechanization of agriculture, hybrids could provide uniform characteristics amenable to 20 mechanical harvesting such as uniform maturity, concentrated fruit set etc., thereby increasing 21 their attractiveness to and profitability for farmers. At the end of World War II, the emphasis was 22 almost solely on yield, rather than nutritional quality because of food shortages in Europe. Later 23 this trend continued because of the rise of processed food where uniform standards were 24 required. This emphasis has remained until very recently with the advent of foods with additional 25 or extra vitamins or minerals.

26

27 Between 1940 and 1960, new maize hybrids were developed by private companies such as the 28 forerunners to Pioneer Hi-Bred (Troyer, 1999) that were suited to the application of nitrogen 29 fertilizers. Between 1950 and 1980, the amount of nitrogen fertilizer applied to corn in the USA 30 increased by a factor of 17 (Kloppenburg, 2004). Changes in plant architecture brought about by 31 hybridization allowed these plants to be grown more densely with higher rates of fertilizer 32 application and they were typically managed with the use of insecticides, fungicides and 33 herbicides. Indeed, developments in crop protection have tended to parallel those in fertilizers. 34 35 Breeding with conventional techniques and biotechnologies has made considerable contributions

36 to the development of non-cereal crops. The main targets for breeding have been agronomic

37 properties such as crop pest and disease resistance and tolerances to biotic stresses (e.g. cold,

1 heat, salt). Extending crop flavor, quality, nutritional characteristics, shelf life and seasonality are

2 increasingly of importance in breeding programs for high value crops. Some breeding programs

3 are even targeted at improving harvesting and transport. For vegetable cropping, quality has

4 been the main driver of different breeding. There is currently renewed interest in breeding for

5 resistance against pest and diseases in order to decrease pesticide inputs.

6

7 <u>Mutagenesis</u>

8 Radiation (usually gamma or x-ray) and certain chemicals have been used to induce mutations in 9 plants as part of plant breeding for the past 50-60 years. Induced mutations are used to provide a 10 general increase in genetic variation for use in plant breeding, or for the direct production of a 11 variety with a certain characteristic. The techniques have been applied to almost all crops. Seed 12 producing crops form the majority of new varieties produced through mutagenesis, but varieties of 13 crops that can be reproduced vegetatively (e.g. the banana, trees, ornamental flowers) have also 14 been developed (Ahloowalia et al., 2004). Mutagenesis has unpredictable effects and after 15 exposure, plants must be grown to see if any useful mutants result that can be multiplied and 16 developed as distinct varieties or used in plant breeding.

17

18 Mutagenesis is reported to have resulted in the production of 2,252 varieties according to the

19 FAO /IAEA mutation varieties database up to the end of 2000 (Maluszynski et al., 2000). It has

20 been increasingly applied to ornamental plants and flowers. One factor favoring the use of

21 induced mutants has been the lack of intellectual property restrictions on access for use in cross

22 breeding programs. One of the highest profile uses of mutagensis in plant breeding in recent

23 years has been in the production of non-GE herbicide tolerant crops, e.g. for imidazolinone

- 24 tolerance.
- 25

26 Marker assisted selection

27 DNA knowledge-based techniques, such as marker-assisted selection (MAS) and genetic 28 engineering, rely on genomic characteristics and mapping and have shown great promise over 29 the past few years (Asíns, 2002). This is especially true for complex characteristics such as 30 drought resistance that tend to be controlled by multiple genes and hence are not amenable to 31 straight-forward genetic engineering strategies. Furthermore, plants produced using MAS are 32 considered conventionally bred in the US and Europe and are not subject to the same consumer 33 and safety concerns raised with respect to GE crops, although in Canada they are regulated in 34 the same manner. Marker assisted selection can be performed by private companies or public 35 institutes as varieties would be protected by plant breeders rights.

36

37 Genetic Engineering

- 1 In NAE, only North America has embraced genetically engineered crops since 1996 (Fig. 2-11).
- 2 Predominantly herbicide tolerant and/or insect resistant GE varieties of soybean, maize, cotton
- 3 and canola are grown. For the most part, European acreage is limited to field trials of GE crops
- 4 (ISAAA, 2005). GE crops producing novel compounds not intended for food use (industrial and
- 5 pharmaceutical crops) are currently grown only in the US in small quantities and under strict
- 6 management systems.
- 7
- 8 Insert Figure 2-11. Uptake of genetically engineered crops in the US
- 9

10 According to USDA's Agricultural and Resource Management Surveys (ARMS) conducted in 11 2001-2003, the majority of US farmers adopting GE corn, cotton and soybeans indicated that they 12 did so mainly because of improved weed or pest control. Other reasons for adopting these 13 varieties were to save management time, to make other practices easier and to decrease 14 pesticide costs. The actual impact on farm income appears to vary from crop-to-crop; in some 15 instances, management time savings have offered farm families the opportunity to generate more 16 off-farm income (Fernandez-Cornejo and Caswell, 2006). In the EU, the total area of 17 commercially grown GE crops is much less, accounting for only a few percent of the total maize 18 harvest which is only grown for animal feed (GMO Compass, 2007). Regulatory differences and 19 differences in public attitudes towards GE are the keys to understanding the different patterns of 20 growth and are discussed later in this section.

21

22 Changes in the organizational arrangements of seeds and genetics

Plant breeders turned to new genetic techniques for a variety of reasons, including major
emphasis on increased production and productivity in the political arena across the whole of NAE
[.f. discussion of political emphasis on demand in Eastern Europe (Medvedev, 1987)] as well as
through market demand. Moreover, efficient and well-financed knowledge transfer systems (e.g.
extension and private consultants) moved these new plant breeding technologies and techniques
into widespread use. In addition, plant breeders were responding to the larger scientific arena that
was pushing knowledge boundaries.

30

Such major transformations in technologies and techniques were accompanied by significant changes in the organizational arrangements of seeds and genetics. Even as hybrid maize was developed by public institutes such as USDA in the 1920s, it became clear that there was an economic dimension to their development (Kloppenburg, 1991). Because the grain harvested from hybrid plants cannot produce economically viable seed, the seed has to be brought each year by the farmer. This contrasts with open pollinated varieties where seeds can be saved from year-to year. Thus, the seed business developed from a public service to a profitable industry 1 (Fernandez-Cornejo, 2004). At the same time, the number of varieties researched, developed
2 and produced by public institutes waned.

3

4 A major driver of the shift from public to private research was the establishment of Plant 5 Breeders' Rights (PBR). PBR are granted to the breeder of a new variety of plant to grant the 6 control of the seed of a new variety and the right to collect royalties for a number of years. For 7 several of the main commodity crops, farmers cannot sell the seed they produce but can use their 8 own crops as seed. In 1961, the International Convention for the Protection of New Varieties of 9 Plants, which restricted the sale of propagated protected varieties, was signed. Within Western 10 Europe and the United States, national legislation was passed in the 1960s and early 1970s in 11 accordance with the Convention. The WTO's Agreement on Trade-Related Aspects of Intellectual 12 Property Rights (TRIPs) and The International Union for the Protection of New Varieties of Plants 13 regulate plant breeders' rights internationally.

14

15 The legislation concerning plant breeders' rights was intended to stimulate private investment in 16 producing new varieties. It certainly has done this but some maintain that there is conflict 17 between these international agreements on plant breeders' rights and the Convention on 18 Biological Diversity which advocates "fair and equitable sharing of the benefits arising out of the 19 utilization of genetic resources. This has led to considerable continued discussion in a number of 20 international forums. These uncertainties affect farmer practice and farmer profitability; 21 clarification will be important for farmers in poor parts of the world to maintain profitability. The 22 latter is important as the development of plant breeding techniques within NAE has had 23 significant impacts on the rest of the world, particularly as many of these techniques and their 24 resulting products have been transferred globally.

25

26 The way GE crops have been introduced into farming in NAE has in part depended on changes 27 within agrochemical and seed industries. In the mid-1980s a new 'technological trajectory' based 28 on biotechnology began to emerge for the agrochemical and seed industries (Parayil, 2003; 29 Chataway et al., 2004). Regulatory pressures, which made it more challenging and costly to bring 30 new chemical based products to market, and the existence of new science and a willingness on 31 the part of industries to engage in large-scale change meant that biotechnology was adopted in 32 research and development in a radical way (Chataway et al., 2004). However, the nature of 33 change was such that adoption of new biotechnology based techniques (predominantly genetic 34 manipulation) initially contributed to strengthening firms' abilities to produce chemicals rather than 35 biotechnology-based alternatives to chemicals. Most multinational agrochemical companies used 36 biotechnology to speed up the screening process for agrochemicals and to improve its efficiency

1 and targeting (Steinrucken and Hermann, 2000). Biotechnology is closely related to changed 2 developments in pharmaceuticals (Malerba and Orsenigo, 2002) and relates to three main areas: 3 Using genomics to validate targets for new pesticides; • 4 Using combinatorial chemistry to generate large numbers of new chemicals for 5 screening; and 6 Using high throughput screening to test very large numbers of chemicals, rapidly on a • 7 range of living targets. 8 These new methods are unlikely to increase the number of new chemical products reaching the 9 market but they are expected to allow companies to meet increasingly stringent regulatory 10 requirements while still launching one or two major new products a year (Tait et al., 2000) 11 12 The development of genetically engineered crops is not entirely within the private sector in NAE; 13 two examples thus far of publicly developed GE crops that have been commercialized or are 14 undergoing regulatory review are virus resistant papaya and virus resistant plum (AGBIOS, 15 2008). 16 17 A key feature of the early evolution of biotechnology were efforts to create a 'life sciences' based 18 industrial sector. Negative public opinion is one factor that affected these plans. The concept of 19 life science synergies played an important part in agrochemical and biotechnology industry 20 managers' strategic planning (Tait et al., 2000). Early interpretations of the term 'life science' 21 assumed that, by using biotechnology to gain a better understanding of the functioning of cells 22 across a wide spectrum of species, there would be useful cross-fertilization of ideas between the 23 development of new drugs and of new crop protection products for agriculture. The vision was 24 one of synergy at 'discovery' level, where a better understanding of genomics and cell processes, 25 made possible by fundamental knowledge gained in the life sciences can lead to new drugs, new

26 27

28 These assumptions were accepted without much questioning until the very early years of the 21st 29 century, partly to justify the continued retention within the same multinational company of two 30 sectors with markedly different profit potentials, pharmaceuticals and agrochemicals. However, 31 the original conception of a life science sector is now being reinterpreted. The synergy worked 32 well where both partners are interested in sources of *chemical* novelty, but not in the *gene* area. 33 The large scale marketing of genetically engineered organisms is not a significant factor in the 34 strategies of pharmaceutical companies. Although experience in the USA and other countries has 35 indicated that GE crop development is potentially very profitable, the negative public reaction in 36 Europe has created potential conflicts of interest between the two industry sectors (Tait et al., 37 2000).

pesticides, GE crops and genetic treatments for disease.

1

2 Over a medium and longer term timescale useful synergies between pharmaceutical and

3 agricultural areas of biotechnology may again emerge, for example genetically engineered

4 pharmaceutical crops. However, it is not clear that a link between the agrochemical and

5 pharmaceutical divisions of companies will be maintained (Tait et al., 2000) and this could

6 influence the direction on agriculture related science, technology and innovation. GE crops

- 7 producing novel compounds not intended for food use (industrial and pharmaceutical crops) are
- 8 currently grown only in the United States in small quantities and under strict management
- 9 systems. Under these conditions, no ecological impacts have been detected.
- 10

11 It is clear that the development of important new technologies in plant breeding (i.e. hybridization, 12 embryo transfer, genetic engineering etc.) has significantly increased productivity of cropping 13 systems in NAE. Moreover, the shift from public institutions to private industry in the development 14 of new varieties and technologies in plant breeding has had considerable impact on the 15 development of cropping systems across the region. Where new technologies and products were 16 developed that could be protected through IPR, industry consolidation has tended to occur. Many 17 firms combined to take advantage of strong demand complementarities between products (Just 18 and Hueth, 1993). This industrial concentration may create efficiencies but it may also limit the 19 technological options as smaller firms which often bring dynamism to a sector find it harder to 20 compete at the level of bringing products to market. However, they often arrange collaborations 21 with larger firms in which they bring initial innovative research to a company with greater 22 resources for product development and deployment. Similar arrangements are increasingly 23 common between researchers in academia and large firms as well. 24 25 2.4.3.3 Nutrients in cropping systems 26 The productivity of agricultural crops draws on three primary sources: carbon dioxide from the

The productivity of agricultural crops draws on three primary sources, carbon dioxide from th

- atmosphere, and water and nutrients from the soil. While carbon is replenished by the
- 28 atmosphere, continuous harvest of plant material can eventually strip reactive nitrogen (N),
- 29 potassium (K) and phosphorus (P) from the soils impeding further plant growth. Agricultural
- 30 production can also be limited by minor nutrient deficiencies, but N, P and K are the main limiting
- factors for production. Hence these are the main nutrients are augmented through synthetic
- 32 fertilization.

33

34 Traditional fertilizers were organic manures, but by the early to mid 1900s the use of inorganic

- 35 sources of P, mined from phosphate rocks and reactive N produced by industrial processes came
- 36 into agricultural use as a result of the development of the Haber-Bosch process in 1910. After the
- 37 end of World War II the use of synthetic fertilizers increased dramatically as a result of the

1	breeding of new varieties able to respond to the increased fertilizer levels. The trends for NAE are
2	similar to the world as a whole. Between 1950 and 1972 the supply of NPK fertilizers to Soviet
3	agriculture increased almost 10 times and the rate of NPK application increased from 7.3 to 55.9
4	kg/ha per year (Narodnoe khoziaistvo, 1975) but there was a significant temporary decrease in
5	fertilizer use in the CEE and CIS countries in the late 1980s due to the collapse of the former
6	Soviet Union. While P use leveled off in North America around 1980, N use is still increasing,
7	though at a slower rate than pre-1980 (Figures 2-12 and 2-13). Fertilizer use in the intensive
8	cropping systems of the NAE is partly responsible for the considerable gains in agricultural
9	productivity in NAE since the 1950s. Until recently, fertilizer has been relatively cheap for farmers
10	and the profits from yield increases achieved far exceeded the costs of the additional fertilizers.
11	
12	Insert Figure 2-12. Fertilizer use in North America
13	
14	Insert Figure 2-13. Nitrogen and phosphorus fertilizer use in Europe and the Baltic States
15	
16	2.4.3.4 Pesticide usage in NAE cropping systems
17	Synthetic chemical pesticides were developed and introduced after 1945 and have since become
18	the major form of pest management in agriculture and stored products in NAE. The term pesticide
19	refers to herbicides, insecticides and fungicides, as well as products that control rodents,
20	nematodes and other pests and treat or preserve timber. Over 1000 chemicals are marketed
21	worldwide, sold in tens of thousands of formulations (Tomlin, 2006).
22	
23	A program for registration of pesticides was initiated in 1947 by the US Department of Agriculture
24	and is currently under the authority of the US Environment Protection Agency (Pierzynski et al.,
25	2000). All NAE countries now have stringent requirements for the registration of pesticides, which
26	authorize specific formulations for each crop and require evidence of tests on non-target
27	organisms, fate and transport of pesticides. Data requirements have progressively increased to
28	address environmental and health concerns. The organochlorine pesticides which represented
29	the first generation of insecticides were bioaccumulative and environmentally persistent. This led
30	to a series of bans and withdrawals in NAE and worldwide. In 1960, chlorinated pesticides had
31	represented about 75% of insecticide use in the US, but by 1997 these were less than 3% (see
32	Aspelin, 2003). Nine of these insecticides are now scheduled to be withdrawn from production
33	and use under the Stockholm Convention on Persistent Organic Pollutants. Since 1992,
34	discussions have taken place to globally harmonize the classification and labeling requirements
35	for pesticides worldwide (OECD, 20xx).
36	
~7	Our that is a harming the set in idea with the same and it has a first 4045, many in the same is the s

Synthetic chemical pesticides did not become available after 1945; massive increases in use
were recorded in NAE from 1950 onwards. Trends in use by volume in the USA (Fig. 2-14) are

also similar to Western Europe, showing a peak in the 1980s. Measurement by volume use is a
limited indicator of pesticide use and change, as it amalgamates information on products used in
undiluted form, reflects neither their toxicity to different organisms nor their persistence in the
environment and masks the fact that newer pesticides are developed to be more active at lower
rates of application. In 1997 approximately 350,000 tonnes (USA), 32,000 tonnes (UK) and
100,000 tonnes (France) of pesticides were used on agricultural crops (FAOSTAT, 2006).

8 Detailed changes at country level are difficult to access, but an example from UK national 9 pesticide survey data demonstrates large increases in land area treated with fungicides and 10 herbicides between 1974 and 2002. Increases arise from multiple treatments on cropped areas 11 as the area sown remained relatively static. The number of pesticide treatments applied per 12 hectare per year increased from two to nearly nine (Chapman et al., 1977; Davis et al., 1990; 13 Garthwaite et al., 1996, 2000, 2004; Sly, 1977, 1986). In the US, where agriculture typically 14 encompasses 75 to 80% of total use of conventional pesticides, the growth of pesticide use 15 through the 1950s and 1960s was primarily due to the greater application of herbicides (Kiely et 16 al., 2004). Herbicide use peaked around 1980, with atrazine being the most used active 17 ingredient for many years, but by 2001 it was overtaken by glyphosate as a result of the wide 18 adoption of glyphosate-tolerant crops. Most US producers of major crops now scout for damaging 19 insects (NASS, 2006) and only apply insecticides when the defined thresholds are exceeded and 20 when the projected savings from yield loss will outweigh the costs of the insecticide application. 21 Some of the decrease since 1995 is due to the use of genetically-engineered insect resistant 22 varieties of maize and cotton (Fernandez-Cornejo and Caswell, 2006). Integrated pest 23 management techniques are increasingly adopted and can make a significant contribution in the 24 general reduction of insecticide use (Kogan, 1998)

- 25
- 26

Insert Figure 2-14. Trends in pesticide use in the USA

27

28 A number of NAE governments have promoted programs to reduce pesticide use. A Canadian 29 government program, Food Systems 2002, was launched in 1987 to reduce the use of pesticides 30 in agriculture by 50% by the year 2002 (Gallivan et al., 2001) and achieved a 38.5% reduction 31 1983-1998. The decrease came partly from smaller cropping areas, but principally from reduction 32 in mean application rates. In the EU, a number of countries, including in Denmark, Germany, the 33 Netherlands and Sweden, have adopted legislation to reduce pesticide use and reductions have 34 been achieved, partly by the use of newer products with lower environmental footprint. The 35 European Commission (2002) is now requiring countries to develop pesticide reduction 36 strategies.

37

1 Role of AKST

2 The development of pesticides has depended almost totally on scientific advances in the private

3 sector. The majority of pesticides have been produced by multinational agrochemical companies.

4 Research by universities and public agencies (such as US Geological Survey) has improved

5 understanding of the fate and transport of agricultural pesticides and the impacts on drinking and

6 groundwater (Schraer et al., 2000; Thurman and Aga, 2001; Spaulding et al., 2003).

7

8 The public sector has played a greater role in the regulatory approval for pesticides for minor or

9 specialty crops where the small markets are not large enough to warrant conducting the

10 necessary field tests. Science and technology have also played a role in governmental regulation,

11 as new tools and techniques, coupled with increased understanding of environmental

12 consequences, have led to increasingly rigorous evaluation of new products. In the US the

13 number of new pesticides being registered that are classified as low-risk and biopesticides

14 (naturally occurring compounds) are now greater than the number of new conventional

15 pesticides, but they remain a small proportion of the available pesticides (EPA, 2005). Agricultural

16 science has provided tools to develop biological control agents and other non-chemical methods.

17

18 The drivers of pesticide use in the NAE have been:

19 • the objective of increasing crop yield and quality;

the demand from NAE markets for pest- and disease-free products leading to greater use
 of pesticides in almost all crops and horticultural crops in particular; and

• the rise of related environmental concerns among regulators and the general public

23 resulting in greater regulation of pesticides and restrictions on use. A specific aspect of this has

been the need to reduce levels of pesticides in both ground and surface waters and to minimizeresidue levels in food.

26•

27 2.4.3.5 Water control in NAE cropping systems

Soil moisture in agriculture has a large impact on yield and plant health. Root growth and function

is impaired if soils are either waterlogged or droughted and this in turn affects the vigor of the

30 plant above ground.

31

32 As many lowland soils are naturally waterlogged, especially during spring and fall, farmers have

33 often drained their land with subsurface drains that are highly effective at removing water from

34 large areas of land. The fired clay was expensive and installation was labor-intensive so 19402

35 era drainage pipes were replaced with machine laid plastic pipes in the 1950s (Spoor and Leeds-

36 Harrison, 1997). Large subsidies were made available to farmers to encourage soil drainage and

37 from 1950 to 1990 vast areas were drained (c.f. Robinson and Armstrong, 1988 for a UK

example), improving crop yields and increasing access to land for spring planting and harvesting
at the end of the season. Access to land in fall also opened up the potential for winter cropping,
which is now common over large parts of Europe and the US. While drainage on this scale
certainly improved yields it also gave rise to serious water pollution problems due to oxidation of
iron and sulphur compounds in soils and increased nutrient and pesticide run-off to rivers and
streams (Sagardoy, 1993; EEG, 1994; Ongley, 1996; FAO, 1997) (see Chapter 3 for discussion
of environmental impacts of irrigation).

8

9 In NAE irrigation is used extensively in southern Europe and the western United States. Much of 10 this use focuses on high value horticultural crops, although there is also appreciable usage in 11 some of the major arable crops such as maize, soybeans and potatoes. Overall, within the EU 12 (15), there has been a rise in the percentage of irrigated crops from 4 to 9% over the last forty 13 years (source FAOSTAT, AQUASTAT). This average value disguises the greater areas irrigated 14 in the hotter southern countries and the much lower usage further north. In the United States, the 15 area under irrigation doubled between 1949 and 1979 to 21 million hectares and by 1987 had 16 more than doubled again (Rhoades, 1990a). Although irrigated land is only 18% of the total 17 harvested cropland, farms with irrigated land receive 60% of the total market value of crops in the 18 United States (USDA, 2004). Irrigation not only increases crop value, it can also increase water 19 use efficiency (Howell, 2001) by increasing the mass of crop produced per volume of water. 20

A major challenge for irrigated agriculture is increasing competition for water, primarily due to
population increase (NRC, 1996). As a result of this irrigation cost will increase (CAST, 1996);
already the average irrigation application rate has declined from 1080 ha-mm per ha (3.55 acre-ft
per acre) in 1950 to 756 ha-mm per ha (2.48 acre-ft per acre) in 2000.

25

The desire for increased productivity has been a major driver increasing the use of irrigation in the NAE, along with an increasing demand for products outside their normal production period (especially for fruits and vegetables) and the increased profitability of crop production using irrigation methods.

30

31 2.4.4 Agricultural products for energy and fuels

Due to a rapidly growing interest in developing alternate fuels for transportation, expectations are high for agriculture to produce liquid biofuels. The US Energy Policy Act of 2005 calls for the use 7.5 billion gallons per year (equivalent to 2% of the US gasoline consumption) of biofuel (primarily ethanol) to be mixed into the US fuel supply by 2012. The European Union biofuels directive of 2003 sets a reference value of 5.75% for the market share of biofuels in 2010.

1 In the US, ethanol production capacity has increased from 1.6 billion gallons per year in 2000 to

- 2 about 5 billion gallons per year in 2006, with an additional 6 billion gallon capacity under
- 3 construction (Renewable Fuels Association, 2006). Biodiesel production (primarily using soybean
- 4 as a feedstock) is currently much lower than ethanol, but rapidly expanding. As of 2005, there
- 5 were 53 biodiesel plants with a capacity of 354 million gallons per year. Biodiesel capacity is
- 6 expected to reach 1.2 billion gallons per year.
- 7

As in North America, production of biofuels is increasing in some parts of Europe. Little was produced prior to 2000 but by 2004 biofuel production had reached 2.4 M tonnes and the aim is to produce 18 M tonnes by 2010 (EU Commission, 2006). Unlike the USA, most biofuel in Europe is biodiesel from oilseed rape and in 2004 2 M tonnes were produced. Assuming an average yield of 2.5 tonnes ha⁻¹ this amount of biodiesel would have been produced by about 300,000 ha of oilseed rape. The remainder of the biofuel production was bioethanol, much of it derived from excess wine production in the EU.

15

Increased biofuel production can increase the price for the crops at the farm gate and provide more price stability. In addition, the biofuel industry can provide off-farm, rural employment opportunities while the byproducts of biofuel production (distilled grains and residue after oil is recovered) are considered quality feed supplements.

20

However, there are clearly limits as to how much biofuel can be produced, at least with current
and foreseeable technologies. For example, in 2005, 14% of the US corn crop was used to
produce the equivalent of 2% of gasoline use in the US (by energy content). By comparison, the
US exports about 16% of its corn production. Using the same corn use to ethanol ratio, utilization
of 100% of the US corn crop for ethanol would produce fuel to replace only about 14% of the US
(2005) gasoline use.

27

While at least at a modest scale, biofuels production should benefit the NAE agricultural community, questions remain whether greatly increased production and use of biofuels will have detrimental environmental effects, or even meet the projected environmental benefits. To the extent that mandates to meet certain biofuel use targets cannot be met by domestic production, biofuels will need to be imported. This may negate some of the savings expected from import of petroleum products. Further, it may prompt increases in agricultural production elsewhere at detriment to the environment (e.g. Pearce, 2005).

One incentive for the use of biofuels is their replacement for fossil fuels. There are some
 estimates that the current production of biofuels is actually carbon negative in that it takes more

- 1 fossil fuel to produce biofuel than the petroleum it is intended to replace (e.g. Pimentel and
- 2 Patzek, 2005) though others point to a positive net carbon balance in the production and use of
- 3 biofuels (e.g. Farrell et al., 2006; Worldwatch, 2006). Biofuels could be used to replace the fossil
- 4 fuels in the agricultural practices to produce biofuels.
- 5

6 Other agricultural-related energy sources

7 Agricultural lands may make a contribution to energy in ways other than through production

- 8 agriculture. For example, in the US the richest wind energy resource, available in wide areas,
- 9 stretches from the upper Midwestern plain states to Texas (Elliot et al., 1986). Farmers have
- 10 leased the land for turbines, or have invested directly in their ownership. The potential of the
- 11 Midwest wind resource has been recognized and the number of installed wind turbines and
- 12 overall electricity production capacity is expanding (c.f. Wind Energy Association,
- 13 http://www.windustry.org/default.htm; US Dep. Energy, 2007).
- 14

15 Forestry and other sources of plant material (e.g., biomass crops) are being increasingly used in 16 Europe as a source of heat and energy, driven by the rising price of oil. In 2004 52.4 M tonnes (oil 17 equivalent) were produced from these sources. A huge proportion of this was from forestry waste, 18 especially in the well forested EU states, such as those in Scandinavia. However, the EU propose 19 to greatly increase the 2% of energy from biomass crops such as coppice willow and Miscanthus 20 grass, so that it makes an appreciable contribution to the EU energy budget in the future (EC, 21 2005, 2007). As in the USA there are also considerable developments in the utilization of wind 22 power. In 2004 the EU contributed 73% of the world's total capacity of 48 thousand MW. There is 23 much debate as to the location of these wind farms and of their environmental impact, but they do 24 offer an alternative source of income to farmers and other land owners.

25

26 2.4.5 Organic cropping systems

27 Largely unidentified as organic before the advent of synthetic fertilizers and pesticides, organic 28 agriculture has been one response to public concern over the environmental and health impacts 29 of industrialized agriculture. Since the beginning of the 1990s, organic farming has rapidly 30 developed in almost all European countries. Growth has slowed recently. In 2004 in Europe, 6.5 31 million hectares were managed organically on about 167,000 farms. In the European Union more 32 than 5.8 million hectares are under organic management and there are almost 140,000 organic 33 farms. The country with the highest number of farms and the largest organic area is Italy. In most countries of Europe and particularly the European Union organic farming is supported with 34 35 legislation and direct payments. In terms of the share of organic farmland to total agricultural 36 area, Austria, Switzerland and Scandinavian countries lead the way. In Switzerland, for example, 37 more than 10% of the agricultural land is managed organically (Willer and Yussefi, 2007). In fact

the land under the organic certification has been largely increasing since 1994, i.e. when financial
 support was first introduced by the EU-Regulation 92/2078.

3

The support for organic production granted by the reform of the CAP, i.e. enforcement of the EU Regulation 2078/92 (mis.A3+A4), constituted a fundamental step in this evolution and largely promoted the conversion to organic farming in the Southern regions of the EU, even though the pioneers of organic agriculture were in North and in Central Europe. In the 1990s, regions in the south of Italy recorded the highest rates of growth of farms in conversion to organic farming. In the European Union, the European Organic Action Plan implementation process is now getting under way (Miele and Pinducciu, 2001).

11

12 In North America almost 1.4 million hectares are managed organically, representing 13 approximately a 0.3% share of the total agricultural area. Currently, the number of organic farms 14 is almost 12,000 (Willer and Yussefi, 2007). With the adoption of national standards in 2002 in the 15 United States, the organic sector has been able to provide a guarantee to consumers that organic 16 products using the labeling followed specific practices. The US market has been growing rapidly, 17 estimated by the Organic Trade Association at 20% or more per year, with a growing number of 18 certification agencies accredited by USDA and talks progressing to expedite international trade of 19 organic products. Since 1999, the Canadian industry has had a voluntary Canada Organic 20 Standard that is not supported by regulation. The organic industry continues to devote its 21 energies toward implementation of a mandatory national organic regulation to help expedite trade 22 relations with such major trading partners as the United States, European Union and Japan. 23

24 2.4.6 Key changes in cropping systems and drivers

In summary, production of arable crops has doubled and in some cases tripled over the last 50 years in the NAE. These production increases have been mainly due to increases in output per unit area, as the area of arable land in the NAE has not increased and in many countries has decreased slightly. Production increases have been facilitated by the contribution of AKST, providing farmers with new tools to enhance crop production. These have primarily been more efficient use of fertilizers, mechanization and development of novel more effective agrochemicals and the breeding of new higher yielding cultivars.

32

Dissemination of this new knowledge has depended on the development of efficient knowledge
 transfer systems, both governmental and private sector. Moreover, there has been increased
 technological sophistication in agricultural mechanization. The increased productivity/efficiency of
 cropping systems has left more time for off-farm employment and decreased labor employment in

- 1 agriculture. Despite the labor savings brought about by mechanization in many agricultural
- 2 systems, some production systems remain labor-intensive (e.g. horticultural crops).
- 3

New tools enabled change or extension of farming practice. For example, larger field sizes to accommodate machinery, new areas under cultivation because of improved plough/cultivation capability, increased capability for minimum tillage, increased ability to cope with management and feeding of livestock at higher densities, shift from silage to hay. However, there are also negative aspects associated with soil compaction and structural damage resulting from frequent passes of large heavy machinery. Still, mechanization has increased the practicality of the production of some organic crops (e.g. new innovations in mechanical weeders).

11

12 2.5 Changes in Livestock Systems in NAE

13 As in cropping systems, the key change in livestock systems in NAE has been significant 14 increase in both productivity and production of meat and dairy products driven by an increased 15 demand for these products among NAE consumers. This has been made possible by improved 16 genetics and widespread access to superior genotypes, changes in livestock feeding regimes, 17 development of specialized production units for livestock and improvements in food safety. 18 Consumer demand for humanely treated livestock and increased concern about environmental 19 impacts of intensive livestock production have started to change production practices across 20 NAE, especially in Western Europe. 21

Because of World War II's disruptions to production, distribution and storage, the postwar
livestock industry could not meet European consumer demand until the late 1950s. Meat
consumption per capita has generally increased since post-war rationing ended (Aumaitre and
Boyazoglu, 2000). During the post-war years most European governments used subsidies to
increase livestock production (Hodges, 1999).

27

Mixed farms such as those in Europe where livestock was fed mainly by grazing or cereals
produced on the same farm predominated after WWII. In this period, the US had a geographically
dispersed livestock sector. On the uplands in Europe, pastoralism was a way of life using summer
grazing and winter stock movements ('transhumance') developed in mediaeval times.

32

33 In Europe, the mixed farms of the 1940s have today almost completely changed to either

34 specialist arable or milk and livestock production units, using high intensity production methods

35 promoted by the CAP and state subsidies of capital investment and/or productivity-related

- 36 payments (de Haan et al., 1997). Half of all EU farms still have livestock, with 90% now specialist
- 37 livestock producers, buying feed from global commodity markets (European Commission).

1 Europe now has one of the highest livestock densities in the world (FAOSTAT), with a mixture of

2 intensive grazing and fattening/rearing units where livestock are fed on both home-grown and

3 imported feed. The overall result has been increased livestock numbers (although the livestock

4 density (LU/ha) in Europe has fallen some 10% in the past decade (FAOSTAT) and increased

5 productivity of all livestock and dairy products, leading to large-scale over-production in the cattle,

- 6 pig and poultry sectors over the past twenty years.
- 7

8 US and Canadian livestock sectors have also undergone extensive restructuring since 1945, but 9 in different ways (Table 2-7). One of the key developments has been the integration of the US, 10 Canadian and Mexican livestock sector, accelerated by the adoption of NAFTA in 1994. This is 11 particularly true in the beef and pork sectors (Farm Foundation, 2004; Haley, 2004; Young and 12 Marsh, 1998). Prices for beef and pork tend to move together in both wholesale and live animal 13 markets, particularly in Canada and the US (Vollrath and Hallahan, 2006) (e.g. 8% of pork 14 slaughtered in the US now originates in Canada, a large increase over the last decade (Hahn et 15 al., 2005). Poultry is the exception as it is not as well-integrated because it is a managed sector in

16

Canada.

- 17
- 18

Insert Table 2-7. Change in livestock farming operations in NA.

19

20 As in Europe, the number of farms in North America with livestock has decreased (McBride, 21 1997), while production of red meat, poultry products and dairy products has continued to 22 increase. In the US, there have been significant geographic concentrations in beef and broiler 23 production. Large feedlot operations for beef are concentrated in the Great Plains, while broiler 24 production is heavily concentrated in the Southeast. In the 1980s hog production shifted from the 25 Midwest to large operations in the Southeast (Figure 2-15; Welsh et al., 2003). At the same time, 26 dairy production expanded in Western states away from the Northeast and Upper Midwest 27 (McBride, 1997). Canada has seen similar geographic concentrations of livestock production with 28 hog production shifting from Quebec and Ontario to the west, particularly Manitoba, while cattle

- 29 production has become concentrated in Alberta (USDA-FAS, 1996).
- 30

31 Insert Figure 2-15. Geographic changes in hog and pig production in the U.S

32

33 2.5.1 Trends in output and productivity since 1945

Four groups of animals produce over 90% of Europe's meat and dairy products; cattle for milk,

35 beef and veal, pigs for meat, poultry for meat and eggs and sheep and goats for meat, milk and

36 wool. Meat, dairy products and eggs account for over one-third of the total value of agricultural

37 production in Europe. Beef sales declined during the BSE crisis from 1996 to 2001 but have now

begun to recover (Morgan, 2001; USDA, 2005). Pig and poultry meat consumption increased due to the BSE-induced dip in beef demand, but have increased even further since the 1990s due to greater competitiveness with other meat production, partly as a result of CAP reforms that made cheaper cereals available for animal feed. Sheep meat production and consumption declined during the 2001 UK foot-and-mouth disease outbreak, but have now almost recovered (Eurostat Agriculture, 2007a).

7

In response to growing demand from a larger and richer population, production of all livestock increased very rapidly in the EU-15 from 1961 to 2000, while production of meat and dairy products has fallen in CEE from 1990, mainly as a result of the transition from a centrally planned to a market economy. However in Hungary, Slovenia, Croatia and Romania production has either remained stable or increased slightly from 1993 to 2004 (EU 2004). Europe (EU-25) produces over three times as much meat per head of human population as the world average of 36 kg per capita (FAOSTAT, 2007a).

15

16 This productivity has led to over-production. Europe is more than self-sufficient in meat, with a 17 current net balance of around 105% for all meats (Eurostat Agriculture, 2007a). As a result of 18 rigorous CAP reforms in the 1990s, European production of beef and veal has fallen rapidly from 19 around 50% over-production (EU-15) in the 1990s to around 96% self-sufficiency in 2004. Beef 20 and veal consumption has risen in the past 4 years, with the European production deficit being 21 made up by imports of around 250,000 tonnes per year from South America. Pig meat is still 22 being over-produced in EU-25 by about 8%, making the EU-25 a net exporter of pig meat 23 products, mainly to Russia and Japan.

24

25 The EU is a net importer of sheep meat (EU-25 is only 78% self-sufficient in sheep and goat

26 meat) and dairy products, mostly from New Zealand and also imports large quantities of poultry

27 meat from Brazil and Thailand, where production costs are much lower than in Europe.

28 Somewhat perversely the EU also exports large quantities of poultry meat and offal to Russia and

the Ukraine and parts of the Middle East (Eurostat Agricultural Trade Statistics data).

30

North America accounts for 16% of the world's total number of beef cows, 8% of the world's pig crop, nearly one-third of the world's poultry meat production and nearly 15% of the world's milk (Farm Foundation, 2004; Adcock et al., 2006). In the swine sector, productivity in breeding herds has increased significantly, with 3.2 million fewer sows in 2004 than in 1980 producing roughly the same amount of pigs. The US and Canada have been able to increase milk output 19% (Figure 2-16) and 6% respectively, even with fewer cows, due to significant improvements in milk productivity related to improved genetics (Farm Foundation, 2004). In the US the value of

1	livestock production increased nearly by a factor of eight between 1948 and 2005, while the
2	production of red meat increased nearly 50% from 1963 to 2006 (even though lamb and mutton
3	production has declined sharply due to cheaper imports). Poultry production has also significantly
4	increased.
5	
6	Insert Figure 2-16. Trends in productivity per cow in US from 1996-2005.
7	
8	In Canada, pig slaughter has nearly tripled since 1976, while cattle slaughter declined and then
9	started to increase in the last 15 years, due to the opening of new processing facilities by US
10	based firms, Cargill and Tyson. Sheep and lamb slaughter, while still very small has managed to
11	almost double since 1976 a very different trend than the US.
12	
13	Overall, livestock productivity and output in NAE has increased enormously since 1945 with beef,
14	pig meat and milk production almost doubling and a four-fold increase in numbers of poultry.
15	Sheep and goat numbers and production of meats and other products from this animal stock
16	have remained comparatively stable (data compiled from FAO, Eurostat and USDA).
17	
18	2.5.2 Drivers of increased livestock output and productivity
19	The spectacular rises in livestock numbers and productivity seen in NAE over the past 50 years
20	result from six major drivers:
21	Growth in population numbers and wealth, creating strong market demand for meat and
22	dairy products (for example in dairy products a 1% growth in income gives almost the
23	same increase in consumption in low income countries and about 0.35% increase in
24	wealthy countries (Agra/CEAS, 2004);
25	Strong policies and strategic frameworks within NAE aimed at increasing livestock
26	production;
27	Rules and regulations determining husbandry methods and processing of livestock
28	products;
29	Production-led subsidies that funded output and productivity increases (Starmer and
30	Wise, 2007);
31	• The application of knowledge, science and technology to animal genetics and nutrition,
32	including grassland management and feed formulation; and
33	Improvements in animal and livestock product transport systems allowing animal
34	production and slaughter to be situated more closely to major supplies of feed.
35	

- 36 The most important contributors of AKST to increased productivity have been changes in
- 37 livestock genetics, livestock feeding and stock management systems. For example, selection

involved in animal breeding took place at the farm level until the end of the 19th Century resulting
 in the adaptation of cattle, pigs, sheep, goats and poultry to specific (usually regional) farming

- 3 and market situations (Hodges, 1999). Yield goals were blended with emphasis on selecting
- 4 livestock that would thrive on particular types of land, climate and feed (CIV website).
- 5

6 By contrast, in the 20th Century livestock breeding was increasingly done in either state-owned or 7 private institutions using genetic science. Coupled with advances in land and management 8 practices such as drainage, fertilizer use and better harvest and storage techniques, these 9 breeding programs began to be more yield-oriented to cope with increased demands for food 10 from a rapidly expanding urban population in Europe and desire for more meat consumption 11 among North Americans. This drive for greater productivity accelerated in the 1950s as a 12 response to the need to rebuild the food supply chain after World War II. Science-based livestock 13 breeding typically produced annual genetic changes of around 2% of the mean of a trait (or trait-14 related index), especially in species with high reproductive rates like pigs and poultry (Simm et 15 al., 2005). Not only were yields from livestock varieties substantially increased, but standardized 16 livestock systems were also developed where in cattle (and to some extent sheep), the landscape 17 was adapted to the system. In pigs and poultry, the whole enterprise was taken off the land and 18 into intensive housing and feeding systems. Varieties that maximized food conversion ratios were 19 quickly developed, especially in pigs and poultry (Simm et al., 2005), with cattle breeding focused 20 almost entirely on high milk and meat production. In N. America in the 1960s and 1970s, the so-21 called "British Breeds" of cattle were replaced in much of the beef sector by "Continental Breeds" 22 that introduced size and leanness, in response to consumer desire for leaner beef. The genetic 23 techniques used to achieve these productivity gains include: 24 • Better statistical methods of estimating the breeding value of animals 25 • The use of artificial insemination that allowed producers at any level to access superior 26 genetics 27 Better techniques for measuring performance of new breeds • 28 • Selection focused on quantitative traits, such as weight gain and disease resistance 29 30 Despite the undoubted success of these science-based breeding programs, it is generally agreed 31 that the maximum genetic potential of cattle, pigs and poultry has still not been reached and 32 intensive breeding programs are still maintained in Europe although the focus is now shifting 33 away from continued productivity increases towards animal health and welfare traits 34 (Garnsworthy, 2005).

35

As a result of these breeding and husbandry techniques, the wide variety of landraces in 1945
 was quickly replaced by a few high yielding varieties, such as Holstein/Friesian milking cattle (e.g.

1 this breed comprised more than 85% of the Canadian dairy herd in 1999 (Kemp, 2001) or white

2 lines of pigs used in intensive production facilities. Most livestock landraces have survived in

3 small numbers either by the activities of 'rare breed societies' who try to maintain the genetic

4 base of the 'old' livestock breeds, or by being used to produce niche market high quality products,

5 mainly meat and cheeses.

6

The latest developments in animal breeding include genetic engineering. Its use is unpopular in
Europe, but in North America, ancillary uses of GE technology, e.g., to increase milk production
through the administration of recombinant Bovine Somatotropin (rBST) has been widely adopted.
Whether transgenic animals in the food supply are accepted by NAE consumers remains to be
seen. In Europe, rBST use for milk production raised concerns about animal suffering and
potential negative impacts on small farmers. In the context of surplus milk production in NAE, the
benefits of this application continue to be debated.

14

Simultaneously with breeding for improved productivity, NAE scientists also focused on improving livestock feeding and management. For example, the weight gain for broilers at 56 days in 1957 was around 800g, compared to a 3900g weight gain in 2001 (Havenstein et al., 2003). Similar trends can be found for weight gain in pigs and for milk yields in cattle (Simm, 1998). Breeding and nutrition technologies for sheep and goats have not been subjected to such intensive scientific attention as they are still mainly raised on marginal land throughout Europe and the market is smaller.

22

23 Grassland-based cattle systems have changed radically throughout most of Northern and 24 Western Europe from haymaking to silaging using the highest fertilizer inputs in the world 25 (FAOSTAT), with great loss of non-grass biodiversity in pastures and meadows since WW2 26 (Johnson and Hope 2005). Haymaking with low fertilizer use still survives in upland and marginal 27 areas in N and W Europe and in many parts of the CEE countries, especially where traditional 28 breeds of livestock are used. Grasslands, particularly in western regions, have been the 29 predominant system for cow-calf and sheep production in N. America. Because of increased 30 environmental concerns about management of federal lands in the US, there has been renewed 31 interest in range management. Intensive grazing systems are increasingly used in beef cow and 32 dairy herds across NA, where the focus is on increasing profitability per animal, rather than 33 maximizing productivity (Gerrish, 2004). In the future, increased demand for grain for biofuel 34 production may increase costs of animal production, potentially increasing consumer prices to the 35 point where supply of cheap livestock products is reduced in less wealthy parts of NAE. 36

1 A major change contributing to increased production and better storage has been in the vertical

2 integration of the livestock chain through standardizing genetics, feeding systems and housing

3 units while increasing communication throughout the sector. In N. America this is particularly

4 apparent in the poultry and pork sectors and in Europe, high throughput automated housing,

5 feeding, slaughtering and processing facilities have grown larger, replacing smaller family-owned

6 businesses (European Commission, 2001). Across NAE, many animal production, slaughter and

7 processing units are operated by large consortia which control large parts of the food chain,

8 increasingly out-competing family farms by means of their economies of scale and ability to

- 9 influence market prices for livestock and products.
- 10

11 Changes in Livestock and Labor

12 Changing consumer preferences and the meat industry's increased emphasis on pre-cut and pre-13 packaged meat and growing export levels increased the demand for labor. Between 1972 and 14 2001 employment in the poultry processing industry increased by 150% in the US, with jobs being 15 on offer mainly as low-skilled manual labor. During this period re-structuring in the industry had 16 led to a re-location of processing plants to rural areas, largely to areas which lacked an unionized 17 tradition. With greater technological innovation, meat-processing has become increasingly de-18 skilled and in addition to stable or declining real wages meat processing employment became less appealing for increasingly well-educated native born workforce (Stull, 1994). The industry 19 20 had undergone a gradual change from unionized urban skilled workforce to rural based mostly 21 non-unionized and low skilled workforce concentrated in manufacturing plants by the 1980s and 22 these characteristics have remained the same since that time (Kandel, 2006) Hispanics workers 23 are over-represented within the food processing industries. Between 1980 and 2000 the 24 proportion of Hispanic meat-processing workers increased from under 10% to almost 30% of the 25 total. The Hispanic workforce during this period itself became mostly foreign born (Kandel, 2006) 26 increasing from 50 to 82% of the Hispanic segment of the population in this period.

27

In the second part of the 20th century, major changes also took place in animal production 28 29 facilities and investment in buildings and their use have become issues of growing importance for 30 farmers and growers (Gay and Grisso, 2002). Traditional buildings associated with livestock 31 production were general purpose, small scale and reflected production systems relying heavily on 32 manual labor. Faced by rising labor costs, facilitated by a variety of technological developments in 33 machinery, building materials and methods of controlling the environment, a major transformation 34 has taken place where modern high throughput facilities, such as dairy parlors and pig and 35 poultry production units, have largely replaced traditional multipurpose buildings. These provide 36 controlled environments with measured use of feed and prophylactic treatments to prevent 37 disease. Such facilities are also very important in the vertical integration of the meat supply chain. 1

2 A less evident contributor to productivity in the NAE livestock sector is the development of

3 effective transport systems that allowed animal feeding and slaughter to be concentrated more

4 closely to feed sources, particularly in beef production. A parallel process was the introduction of

5 vacuum packaging in the late 1960s. This significantly altered the value chain for beef and other

- 6 protein, since retailers could sell particular cuts of meat without an on-site butchery (Duewer,
- 7 1984).
- 8

9 These developments in genetics, management systems and meat handling, combined with the 10 geographical shifts in production, allowed significant restructuring in the beef, pork and poultry 11 sectors leading to the development of confined animal feeding operations, contractual 12 relationships in marketing and specialization in livestock agriculture. These changes have been 13 controversial because intensive livestock production raises ethical and environmental issues. 14 Treating animals as items on a production line offends many NAE citizens who feel this is an 15 unacceptable relationship between humans and other species. Farm animal welfare has become 16 an important area for policy makers, especially in Europe (Webster, 2005). The mass production 17 of animals to specification, while producing cheap and nutritious products, also undermines 18 traditional livestock businesses, reducing local employment and undermining the economic 19 survival of some communities. In an area in which emotions often play an important part in 20 determining attitudes there are a wide range of pressure groups and consumers who criticize 21 intensive livestock production. For example, the development of confined animal feeding 22 operations in NA have resulted in significant conflicts over air and water quality, land use issues 23 (zoning) and regulatory control (Bonanno and Constance, 2006; Donham et al., 2007; Heederick 24 et al., 2007).

25

26 Livestock kept in intensive systems can be prone to outbreaks of disease, illustrated by the 27 periodic outbreaks of foot and mouth disease and encephalopathies such as BSE and scrapie; 28 viral diseases in cattle, sheep and pigs and epidemics of viral and bacterial poultry diseases. 29 While epidemic disease has always been part of livestock production, the larger groups of 30 animals and widespread transport to and from markets associated with intensive systems have 31 increased risks of large epidemics, even though biosecurity at individual units has been improved 32 (e.g. Defra, 2006; Colorado Dept of Agriculture, 2007). It has been argued that intensive systems 33 have also produced new and dangerous diseases such as *E.coli* 0157:H57 and BSE (FAO, 1998; 34 Walker et al., 2005). These epidemics have sometimes devastated livestock sectors in Europe 35 and have largely been controlled by a slaughter policy, although for some pig and poultry 36 diseases vaccination and the routine use of antibiotics has become common practice since the 37 1950s. There is serious concern about the latter as growth promoters and disease control agents

1 in NAE livestock production because of the rise of antibiotic resistant bacteria in humans

- 2 (Khachatourians, 1998; Mellon, 2000).
- 3

Food safety issues are also important in the meat industry in North America. In 1995, an outbreak
of *E coli 0157:H57* killed several children who had eaten fast food hamburgers in Washington
state. This event led to a revolution in food safety procedures in red meat, seafood and poultry in
the US with the creation and adoption of new food safety rules (see 2.8.4). Food safety concerns

8 about Salmonella and Listeria continue to be of concern throughout the NAE livestock sector

9 (Johnston, 2000; Rajic et al., 2007).

10

11 Advances in productivity in the NAE livestock sector would not have been possible without public 12 investments in AKST. In particular, many new genetic selection techniques were developed 13 through public university and disseminated through extension services. Today, much of the actual 14 genetics has been privatized and is now maintained primarily in the private sector, although 15 performance measures for stud selection are still provided in the public realm. In the same way, 16 the research that developed the HACCP approach to food safety was performed by public entities 17 like USDA-Agricultural Research Service and enforcement is still performed through USDA. 18 Finally, many of the engineering advances that allowed the development of large-scale climate 19 controlled buildings for poultry and swine and for handling the wastes of those systems, were 20 developed in the public sector and disseminated widely.

21

22 2.5.3 Key changes in the NAE livestock sector

Livestock productivity and output in NAE has increased enormously since 1945 driven by policy (especially the CAP), government subsidies (Starmer and Wise, 2007) and increasing population and wealth. AKST has been a key driver of growth in the livestock sector and is likely to remain so in the future. Europe and North America have been exporters of livestock sector AKST to the rest of the world.

28

For the past 30 years much of NAE has been producing far more meat and dairy products than it needs with the EU and NAFTA blocks becoming some of the world's leading exporters,

31 particularly in pork (EU), chicken and beef (NA). The search for more market sector has led to

- 32 dumping of these products in less wealthy countries with consequent damage to the economic
- 33 status of their agricultural producers. In common with the rest of the developed world, milk, beef,
- pig meat and poultry are among the most valuable agricultural commodities produced by
- 35 European farmers (see FAO chart for 1985).
- 36

- 1 Much of European lowland and landless livestock production is the most intensive in the world
- 2 and this has had serious adverse impacts on the European environment. Similar situations exist
- 3 in N. America because of the increased geographical concentration of livestock production.
- 4 Across NAE, livestock enterprises have become fewer and larger due to economies of scale and
- 5 this trend is likely to continue especially in the CEE region of EU-25.
- 6
- 7 Developments in genetics, management systems and meat handling in NAE, combined with the
- 8 geographical shifts in production, allowed significant restructuring in the beef, pork and poultry
- 9 sectors leading to the development of confined animal feeding operations, contractual
- 10 relationships in marketing and specialization in livestock agriculture.
- 11

Subsidy-led policies are moving away from production-led subsidies towards a more market-led and environmentally friendly system, but there still substantial direct and indirect subsidies paid to most livestock sectors that reduces the competitiveness of developing countries.

15

16 2.6 Changes in Forestry Systems

In North America and Europe, forests and woodlands have always been the dominant vegetation
cover. NAE forests are largely derived from natural vegetation dominated by deciduous trees in
the south and west and vast areas of conifers towards the north and east that make up over 50%
of total forest cover.

21

NAE forests have been exploited by humans for timber supplies, fuel, food (e.g. nuts, fungi and berries), for cork (the EU is the largest producer of cork with over 80% of the world market) and for paper fiber, while still providing a significant proportion of the renewable energy used by both industrial and domestic consumers. Forests also provide valuable and irreplaceable ecosystem services such as water resource protection, biodiversity and carbon dioxide fixation (MA, 2005). For example, approximately 140,000 species of plants, animal and micro-organisms are estimated to occur in Canada of which approximately 2/3 are found in the forests (Canadian

- 29 Forest Service, 2003).
- 30

31 2.6.1 Main trends in NAE forests and forestry production

NAE is the only world region where there has been an increase in forest area since the 1960s. In 1630, when conversion of North American forests to agricultural land began, 50% of US lands were forests. Today, forests are approximately 33%, but since the 1980s have been increasing by 0.3% per annum. The US growing stock volume increased 39% from 1953 to 2002. The 415 million ha of Canadian forests represent 10% of the world's forests, with 20% of the world's fresh water flowing from its watersheds. Forests cover 45% of the land mass of Canada (Lowe et al., 1 1996) although it is unclear whether forest cover in Canada is stable or contracting (CANFI, 2004).

2

3 4 Forests in Europe have been expanding over the past 40 years by around 0.8% p.a., about 5 880,000 ha per year. This has been mainly due to an increase in plantations, reversion of 6 agricultural land and decreased harvesting activity especially in the Russian Federation. The 7 Russian Federation accounts for over 90% of an estimated 1.5m haper year natural re-8 colonization of non-forest land in Europe (Kuusela 1994; TBFRA, 2000; UNEP, 2002). It has 9 more than seven times more forest cover than the European Union and almost double the 10 combined forest area of Canada and the United States while containing the greatest area of 11 natural forest (UNECE statistical yearbook, 2003). 12 13 There has been a decrease in other wooded land (OWL – woodlands not dense or contiguous

14 enough to be classified as forest of approximately 0.2% p.a. in Europe, similar to that of North 15 America (TBFRA, 2000). Europe (not including the Russian Federation) now has forest cover of 16 around 35% (FAO statistics), similar to that of the US, after having reached a low of 25% during 17 the 19th Century. Since the 1950s, there have been proportionately fewer fellings compared to 18 the increasing forest growth and this has made it possible to supply more wood, while 19 simultaneously increasing the growing stock.

20

21 Throughout NAE there been a steady increase in both deciduous and coniferous plantations 22 since early in the 20th century. This is now accelerating as planting technologies have improved 23 and more agricultural land has become available for conversion to forest (Figure 2-17) There is a 24 distinct trend towards a greater proportion of coniferous wood (now 69% in W Europe, 66% in 25 CIS) being planted. European plantations make up 17% of world plantations with the Russian 26 Federation having the greatest area in Europe. (FAO, 2000; TBFRA-2000; UNECE/FAO, 2000)

27

28 Insert Figure 2-17. Changes in NAE forest area.

29

30 Overall European and Russian forests sequester around 540 million tonnes of carbon per year, 31 some 14% of the world's total sequestration, with US and Canadian forests sequestering about 32 200 million tonnes of carbon per year (UNECE/FAO, 2000a) There has been an increasing trend 33 for forests to be planted specifically for carbon sequestration, funded by schemes set up as a 34 response to the Kyoto Protocol. (Bowyer and Ramsetstein, 2004; MA, 2005)

35

1 2.6.2 Forest ownership and control

Over the past twenty years there has been a strong trend away from public towards private
ownership of forests in W and S Europe, but almost all forest land remains in state ownership in
the CEE countries, although this is changing towards private ownership in former Soviet states
now in the EU-25.

6

Fifty-seven percent of all US forest land is privately owned, but 94% of Canada's forests are
publicly owned. Approximately 10% of US forestland is legally protected from commercial
forestry, more than double that protected in 1953. Around 66% of US forest land is classed as
timberland (forest capable of producing in excess of 20 cubic feet per acre per year and not
legally protected). Since 1953 the area of timberland has had a net loss of one percent primarily
because it has become legally protected. Seventy-one percent of US timberland is privately
owned.

14

In general forest growth rates exceed exploitation levels throughout NAE. Net growth rates have not been increasing as rapidly as in the past, while harvest levels have remained relatively stable since 1986. Increased imports have addressed the additional resource demands. Since 1960 the US forest resources have continued to improve in condition and quality as measured by increased average size and volume of trees; however, if quality is measured as a function of optimum stand density, i.e., optimum number of trees per acres for stands of a given age, then the overall quality of many stands has deteriorated (Smith et al., 2002).

Canada is the largest exporter of forest products with total exports valuing \$44.1 billion (Natural
 Resources Canada, Canadian Forest Service, 2000). In 2002, one in 17 jobs was directly or
 indirectly linked to forests.

26

Less than two-thirds of annual forest growth in Europe (excluding Russia) is harvested, so the
volume of standing wood in forests is growing. In Russia only 14% of annual growth is currently
being harvested, less than the proportion being harvested in the 1970s (TBFRA, 2000).

30

31 The past thirty years have seen an increase in forest accessibility through construction of new

32 logging access roads into remote areas. Conservation protection legislation has also been

applied to many inaccessible areas over the past thirty years. In W Europe over 85% of forest is

now available for wood supply; in CEE, where more forest is protected, 64% is available for wood
 supply (TBFRA, 2000).

36

37 <u>Biodiversity</u>

- 1 In both North America and Europe there has been an overall decrease in forest biodiversity due
- 2 to reductions in areas of natural forest, illegal felling, increases in monocultural plantations,
- 3 increases in serious fires and hunting activity in some countries, adverse effects of air pollution
- 4 and more urban access into forest areas. GEO3 (2000) reports that around 60% of Europe's
- 5 forests are now degraded by the factors listed above. This degradation trend may be reversing in
- 6 some more developed countries (UK, Germany, some CEE countries) with higher levels of legal
- 7 protection than the rest of Europe (> 10% of area protected) and development of new plantations
- 8 that alleviate pressure on natural forest. In the NAE region, Canada and CEE has the highest
- 9 proportion of forest undisturbed by humans.
- 10

11 2.6.3 Forestry as an industry

Demand for forest products in NAE has dramatically increased since the World War II, especially
for industrial wood, with consumption and production more than doubling between 1961 and 2004
(UNECE/FAO, 2003b). Demand and production of fuel wood has increased from 1990 and now
exceeds 1960s levels, but is still only 20% of industrial wood production.

16

17 Because of this, the forestry industry has steadily grown over the past 50 years from a rural 18 activity supplying urban areas with timber products to a major industry producing a wide range of 19 added value products, especially wood-based boards where Europe is one of the world's major 20 exporters. Not only has there been a significant rise in consumption of and demand for, wood-21 based products derived from Europe, but there has also been a significant increase in the import 22 of timber, especially fashionable tropical hardwoods, from other parts of the world, especially from 23 Canada, S. America and the Far East. This import market has had an increasing impact on the 24 forests of other continents and is an important factor driving forest loss in those areas. (FAO, 25 Europa, UNECE).

26

27 2.6.4 AKST in forestry

28 In W and S Europe the main focus of forestry science has changed recently from the traditional 29 productivist paradigm towards a scientific approach to sustainable multifunctional use, including 30 the conservation of species associated with forests and the impacts of climate change. This trend 31 is also found in parts of North America. Since the classification of American forests into 32 ecoregions in the 1970s and 80s (Bailey, 1980; Bockheim, 1984; McNab and Avers, 1994), there 33 has been a change in forest management away from exploitation towards multifunctional 34 sustainability (Johnson et al., 1999; Bosworth, 2004) focusing on four objectives; watershed 35 health and restoration (USDA-USFS, 1999), sustainable forest management, public access and 36 recreation. These topics form the framework for most forest research in NAE.

1 Since 1945 many new technologies have been increasingly applied to forest production,

2 harvesting and processing. Increased pesticides use, especially on conifer plantation

3 monocultures, has led to less insect and disease damage to forests. Drainage and ground

4 preparation techniques have been adapted and scaled up from agriculture, resulting in

5 conversion of more open uplands and wetlands to forest.

6

7 Even using native tree varieties and labor-intensive forestry systems, foresters in Europe and 8 North America have significantly increased productivity and production per unit area by employing 9 new technologies for ground preparation (better drainage, fertilization and tree protection using 10 physical and chemical means), planting technology using mechanical planters, improved 11 management of plantations, advanced rapid timber harvesting and extraction machinery and high 12 throughput processing (for paper, timber and board production). New harvesting technologies 13 have increased harvest rates and result in a higher proportion of felled wood being processed, 14 with less waste For example, in Sweden the introduction of the chainsaw and mechanization of 15 logging operations resulted in total forest work productivity increasing between 2.3 and 12.5 m³ 16 per man-day between 160 and 1990 (Axelsson, 1998). Between 1970 and 1990, the degree of 17 mechanization in final fellings increased from 25% to 85% and in thinning from zero to 60% (Frei 18 and Tosterud, 1989).

19

20 The NAE timber industry also makes better use of fiber by-products (for board manufacture, 21 insulation materials and fuel) than before 1945, when many of these products were simply burnt 22 in the open on site. Much of this development was initiated from the state forest services, both in 23 terms of funding and technical expertise. State services continue to have a major input into 24 technology development, especially in the CEE countries, but in W and S Europe, forest 25 technologies are dominated by a viable industry that exports machinery and knowledge for timber 26 production and processing worldwide. In common with other manufacturing industries, production 27 of machinery used in forestry and wood processing is increasingly shifting to the Far East, a trend 28 that is set to continue.

29

The negative impact has been that the larger scale mechanization has lead to a major decline in the number of forest workers. Another negative consequence is that in systems such as short rotation forestry, soil compaction can be an important issue when considering the mechanization. This can have a particular impact where the crop is harvested in the winter months on wet soils, as can be the case in soils of Northern Europe. In these regions the crops are frequently grown on soil that is saturated during the winter months and soil damage is more likely to be significant (Culshaw and Stokes, 1995).

37

1 Unlike in agriculture, crop varieties used in plantations for commercial forestry are largely derived 2 from selected wild stocks of trees, but not necessarily grown in their native region. Some of these 3 are taken from stands known to grow well in the prevailing conditions and to produce good quality 4 timber. Domestication of trees is still at a very early stage largely because selective breeding is 5 more difficult with plants that have long generation times and that only exhibit desirable traits 6 close to maturity, typically after several decades. Biotechnology and genomic knowledge is 7 beginning to open up the possibility of true domestication of trees, partly by producing varieties 8 with shorter generation times, but mainly through increasing knowledge of the genes responsible 9 for desirable traits.

10

11 2.6.5 Forest institutions

12 Forest management in the United States and Canada has changed dramatically since 1945. In 13 the United States, the Forest Service was formally established in 1905, assisting private forest 14 land owners with management. The limited applicability of European management models to the 15 US context, especially in the area of forest fires, provided impetus for forestry research (Williams, 16 2000). The US and Canada collaborate over research on forest health, sustainability and soils 17 (Lal et al., 1997; O'Neill et al., 2005; Powers et al., 2005)

18

19 Europe has a large number of institutions that underpin the development of forestry as an 20 industry and a social resource (UNECE, 2001). There are at least 150 forest research 21 organizations and learned societies in Europe ranging from industry-sponsored research facilities, 22 to academic departments (and entire 'Forestry Universities' in the CEE countries) and state-23 funded research institutions. These include at least 30 State Forest Services in Europe, some of 24 them also responsible for wider land use issues such as agriculture, biodiversity conservation and 25 water resources. They are often powerful and influential organizations, with substantial funding, 26 human and capital resources. Besides the training available through the organizations above. 27 forestry is included in the general higher educational curriculum of many NAE countries and there 28 are dedicated training establishments for forestry and wood-based processing. 29

30 Throughout NAE forestry NGOs promote sustainable use of forests and campaign for better 31 protection of natural forests. They include forest product consumers who question the ways in 32 which their countries' forests are being managed and exploited. Consumer organizations are 33 increasingly involved in lobbying for more sustainable forestry, both within and outside NAE. This 34 has led to the establishment and expansion of certification schemes throughout NAE, which 35 although controversial (ref), are aimed at assuring consumers that the forests from which their 36 products are derived from forests managed according to a published set of management rules 37 and objectives.

Although many NAE forestry societies, state forest services and research organizations were
established over 100 years ago, these institutions have developed rapidly over the past 50 years,
largely driven by the post-war need to increase timber and paper supplies to an expanding and
increasingly wealthy public. They hold considerable political power and continue to be a key
influence on the success of the forestry industry (World Bank, 2005).

8 2.6.6 Drivers of changes in forestry

9 Markets have always played an important part in forestry production, driven by demand for 10 structural timber for rebuilding NAE infrastructure needed after World War II, meeting demand for 11 increased timber and paper pulp due to an increasing population and demand for fuel wood that 12 is now increasing after a decline from 1950 to 1980. There has been a steady increase in global 13 demand for wood-based boards used in construction and fitments and this is expected to 14 continue in the 21st century (ref).

15

State ownership and subsidies have also played an important role in the development of NAE forestry science and technology, especially the increased use of modern soil preparation, planting and harvesting technologies and processing equipment, has enabled the increases in forest output seen in the past fifty years. Rules and regulations have become increasingly important as drivers of forest management and protection, especially enabled by conservation legislation driven by EU Directives and North American statutes.

22

In NA, the main drivers of change in forestry have been the decreased demand for conversion of
forestland to agriculture; increased demand and market pressures in North America and globally
for wood and wood products; increased emphasis on non-timber products of forests, e.g., wildlife,
range, water, outdoor recreation; and the increased recognition of the role of forests in climate
change and protecting biodiversity.

28 European Forests and Livelihoods

29 Within the EU-15 area, some 2.7 million people are employed in forestry and forest-based

30 industries such as woodworking, the cork industry, pulp and paper manufacture and board

31 production. The industry produces an annual value of at least EUR 335 billion (UNECE/FAO;

32 2003a; EU EUROPA website). The EU is one of the world's largest traders and consumers of

33 forest products, with a net income in this sector. The EU also imports large quantities of forest

34 products, primarily roundwood from the Russian Federation and wood pulp from the Americas,

35 where higher growth and lower production costs make forest products from this region very

36 competitive. The EU excels in the production of high value wood products such as boards, cork

and specialist papers and is a key exporter in this sector. (Bowyer and Rametsteiner, 2004; EU
 EUROPA website).

3

At least 12 million people own forest holdings within the EU-15, mostly small scale owners with an average holding of 13ha, with most owning around 3ha, contrasting with the average area of 1,000ha for public holdings. Private owners occupy around 65% of Europe's forested land. Since enlargement of the EU large areas of previously state-owned forest holdings have been restored to private ownership. There is an increasing trend for private owners to supplement their incomes from urban-based incomes, with less dependence on income from forestry. (EU EUROPA website)

11

European forests are also economically and socially important because, besides providing the wood for industry, they also provide services such as leisure use (tourism, general recreation and hunting) and provide casual income for rural people from collecting valuable products such as fungi, berries and nuts. In Europe forests give many communities and individuals a strong sense of identity that is deeply ingrained in culture and societal values in many parts of Europe (e.g. rights to fuelwood, hunting and the collection of forest foods).

18

19 2.6.7 Trends in NAE forestry

NAE is the only world region where forest cover is increasing. Throughout NAE there been a
 steady increase in both deciduous and coniferous plantations since early in the 20th century.
 Timber productivity has increased since 1945 to meet increased demand, but NAE continues to
 import large quantities of wood, including hardwoods from tropical forests. This has been partly
 responsible for reductions in cover and quality of forests in other world regions.

25

Since 1945 there has been a shift from private to state forest ownership in the US. This trend was
 also apparent in Europe, but here ownership is increasingly being privatized. Forestry research
 and development has increased significantly since 1945. Technologies, especially mechanization,

29 have been developed to achieve faster and more efficient harvests and to access and harvest

- 30 timber in areas previously considered too fragile for harvest
- 31

32 Across NAE, there has been an overall decrease in forest biodiversity. However, adoption of

33 ecosystem-based approaches to manage national forests and grassland has changed the way

34 public/federal land managers in the US and Canada administer natural resources. Forest

35 management for multifunctionality is an increasing trend in Europe, with the exception of Russia

36 where productivity is still the key driver of management.

1	Forestry management continues to provide livelihoods and a cultural focus for large numbers of
2	people in NAE and the forestry product industry has grown rapidly to accommodate increased
3	demand for timber and other forestry-derived products.
4	
5	2.7 Changes in Aquaculture Production
6	2.7.1 North American aquaculture
7	It is useful to divide aquaculture into two distinct types, freshwater and salt water (Figures 2-18, 2-
8	19, 2-20 and 2-21). As a whole, Canadian aquaculture between 1986 and 2004 has grown at an
9	annual rate of 20%.
10	
11	Insert Figure 2-18. Production of major aquaculture species in the US (Note different scale for
12	catfish).
13	
14	Insert Figure 2-19. Production of major salt water aquaculture species in the US
15	
16	Insert Figure 2-20 Canadian saltwater finfish aquaculture production. (Also see note in Figure
17	[Hinga3]); Source Fisheries and Oceans Canada, Statistical Services 1986 to 200 <mark>?</mark>]
18	
19	Insert FIGURE 2-21. Canadian shellfish aquaculture (Source Fisheries and Oceans Canada,
20	Statistical Services 1986 to 2004)
21	
22	In the US modest amounts of fresh water aquaculture, dominated by catfish culture, have been
23	practiced since at least the 1940s. In 2003, there were some 300 tonnes of cattish grown,
24	representing 71% of all US aquaculture, fresh and salt water by weight; trout, talipia, crawfish and
25	balttish comprised the remainder (NMES, 2005). Canadian freshwater aquaculture consists
20	primarily of the rainbow trout and secondarily brook trout.
28	In Canada, the major aquaculture crop is salmon. The majority of the cultured salmon, 55 to 60%
20	is exported to the United States, with the other two largest export markets, Japan and Taiwan
30	each representing less than 2% of production. Steelbead trout is the other seawater finfish
31	aquaculture, but is produced in much lower amounts (Figure 2-20). Through the late 1980s and
32	1900s there was a rapid expansion of clam and especially mussel aquaculture such that mussel
33	is now the major shellfish aquaculture product by weight and by value (Figure 2-21).
34	
35	By contrast, before the 1990's US salt water aquaculture was dominated by oyster culture.
36	However, starting in the mid 1980s and continuing through the 1990s there has been a very large
37	expansion of salmon aquaculture to become the dominant salt water product. Although, salmon is

- 1 the currently largest salt-water aquaculture harvest by weight, the dollar value of oyster
- 2 production (\$63 million in 2003) is greater than that of salmon (\$54 million).
- 3

4 Aquaculture products are growing in importance in both the US and Canada, although they are

- 5 less than 15% of wild fishery landings. Aquaculture in 2003 represented about 10% of US wild
- 6 fishery landings. The total Canadian commercial landings of wild fisheries in 2004 were 1,071,182
- 7 tonnes, while aquaculture production was 145,840 tonnes, or 13.6% of the wild harvest. However,
- 8 for salmon in Canada the wild fishery landed just over 25% of aquaculture production in 2004.
- 9 The US is a net importer of seafood primarily from Asia.
- 10

11 2.7.2 European aquaculture

12 The aquaculture sector in Europe has a very diverse production, processing and marketing

- 13 structure, ranging from small traditional enterprises, through medium sized family fish farms, to
- 14 the large-scale intensive businesses dominated by multinational companies (Fédération
- 15 Européenne de Salmoniculture, 1990; MacAlister Elliott and Partners Ltd., 1999; Varadi et. al.,
- 16 2001). Although there are structural differences between aquaculture sectors in different
- 17 European regions, markets are now the determining factors of success and therefore the major
- 18 driver in the aquaculture business with consumer demands, international competitiveness, health
- and environment issues and product quality all driving demand and price (Stirling Aquaculture1996ab).
- 21

The total output from European aquaculture has increased steadily since 1945 (Tacon, 1997).
From the 1960s to the present the broad pattern of aquaculture development has been (FAO, 1996, 2000; Eurostat website; Tacon and Barg, 1998):

- high growth in Northern Europe and medium growth in Western Europe fuelled by the
 development of salmonid mariculture;
- low growth in Southern Europe with a focus on mariculture of sea fish; and
- decline in Central-Eastern Europe due to general post-transition economic decline and
 changing consumer habits (Staykov, 1994; Szczerbowski, 1996).
- 30

Increases in the production of finfish and molluscs have almost always led to value reduction as the price falls. This has become a serious issue for the viability of salmonid farming in Northern and Western Europe, where ex-farm prices have dropped from 3.5 Euro/kg in 1997 to 2.4 Euro/kg in 2005. In Southern Europe the value of farmed sea fish has remained relatively steady. Overall production increases in European aquaculture have slightly outpaced falls in price, leading to an increase in total value from 3.4 M Euro in 1999 to 3.9 M Euro in 2005.

Subsidies from the EU have contributed to the development of the salmonid sector, but withdrawal of state support in Central and Eastern Europe may have contributed to the decline in cyprinid production. Other challenges for aquaculture include increasing concern from the public and from governments about the quality of fish produced in intensive systems and about the environmental impacts of fish farming and the competition for resources such as high quality water, high protein feed based on fish meal and labor.

7

Freshwater production has grown since 1945, but remained almost static in the 1980s, largely
because output from the CIS countries and Russia declined (FAO, 1996). Increased fish
consumption is expected, especially in Central-Eastern Europe, where per capita fish
consumption still remains far below that of the EU-15 (Tacon, 1997). Overall production from
freshwater aquaculture is now increasing, albeit at a much slower rate than production from
saltwater (FAO, 1996).

14

15 Aquaculture in saltwater has seen a spectacular rise in output since the mid 1970s, when farming 16 salmon in sea cages began to develop in Norway, Scotland and Ireland. Salmonid finfish 17 production now dominates the saltwater sector, overtaking mollusc production in 1995. The 18 success of increasing output from the salmon industry has been tempered by a collapse in prices in the early 1990s, in turn leading to government intervention such as the destruction of smolts 19 20 and feed quota systems introduced in Norway in the mid 1990s (Anon., 1996). Besides salmonid 21 production, other higher value species of saltwater finfish such as bass, turbot, sea bream, cod 22 and halibut are now being intensively farmed in European seas, lagoons and purpose built tanks 23 in coastal waters of the warmer southern European countries such as Greece, Italy and Spain 24 (Tacon, 1997). The industry is still developing from a low base in the 1980s but production has 25 risen rapidly, with for example sea bream and bass production growing annually by over 40% 26 (315 tonnes to 17,000 tonnes) from 1984 to 1995 (FAO, 2000; FAO FISHPLUS website; 27 Eurostat). Production rose to 120,000 tonnes in 2001, most of which was exported from Greece 28 to Italy and Spain, but the market for these fish has now expanded to other European countries. 29

30 The main finfish species groups cultivated in the region are salmon and rainbow trout, with about 31 85% of total farmed finfish production (Eurostat and FAO). Salmonids freshwater cyprinids 32 (mostly carp and eels) constitute the second major finfish species group cultivated in the region at 33 around 12% of total farmed finfish production (Voronin and Gavrilov, 1990; Dushkina, 1994; 34 Zaitsev, 1996). Production of mussels and oysters and other molluscs is still a major part of total 35 aquaculture output in Europe. There has been a slow decline in output of molluscs since the mid 36 1980s driven by a combination of disease problems (Figueras et.al., 1996), changing consumer 37 habits and competition from other aquaculture sectors. Europe is the leading world producer of

farmed turbot (100%), eels (99%), mussels (70%), sea bass and bream (68%), salmon (60%) and
trout (54%).

3

4 From a low base at the end of World War II. European mollusc production increased rapidly until 5 the 1970s and then output has remained relatively static, with some evidence for a decline of 6 about 4% in the past twenty years. Blue Mussel production in France illustrates this trend with 7 output at 8,500 tonnes in 1950 rising to 47,000 tonnes in 1977, a level that is the average 8 maintained since then (FAO FISHPLUS website). Mussels remain the dominant species in this 9 sector (60% of total output), with oysters making up around 25% output and several species of 10 clams the rest. The main mollusc production regions are in France (35% of total), Italy (26%), 11 Spain (17%) and the Netherlands (13%). Mollusc production makes up around 25% of the total 12 monetary value of aquaculture in Europe (Tacon, 1997; FAO, 2000). 13 14 Institutions in aquaculture production in Europe 15 National organizations representing the aquaculture industry have grown rapidly since the 1960s 16 in the Northwestern European countries, handling policy, advice, marketing and research. Some 17 of these, like the Fiskeoppdretternes Salgslag in Norway are effectively production and marketing 18 monopolies, but most others are NGOs independent of the industry. For producers there is a European wide organization, the Federation of European Aquaculture Producers (FEAP), 19 20 representing all national associations at EU level. In most Eastern European countries,

21 aquaculture is usually organized and advised by the Ministries of Agriculture and Food, with the

22 exception of the USSR where it is in a separate Ministry of Fisheries. This state intervention is

rapidly changing as private companies are beginning to gain market share within the Central andEastern parts of EU-25.

25

26 Public investment in fish farming has been and remains a major factor in the development of

27 European aquaculture. In Central and Eastern Europe, public funding has come via state

intervention, whereas in other parts of Europe, state and EU subsidies and development

29 programs have played a significant role in developing both the fresh and saltwater aquaculture

30 industries. Thus, although policy has historically been a driver of aquaculture development, state

31 intervention is declining and markets are becoming more important drivers.

32

33 Fish farming is now strictly regulated in Europe with a number of Directives and domestic

34 legislation covering water use and pollution control, the use of disease control measure (including

35 pesticides) and feed regulations. There are also rules and regulations relating to the processing

36 and marketing of aquaculture products. There is a trend towards stricter regulation and

37 monitoring that adversely affects small family-owned enterprises (Varadi et al., 2001).

1	
2	2.7.3 Science and technology in aquaculture
3	Since 1945 major breakthroughs have been made in fish farming techniques, including:
4	The intensive hatching and rearing of sea fish in the southern countries
5	 Control of density dependent fungal and bacterial diseases in finfish
6	Techniques for rearing salmonids in salt water
7	• The development of fish food processing and supply, including better formulation, the
8	development of specialized feed and automatic feeding
9	
10	These developments have enabled the spectacular increases in production seen in Europe over
11	the past thirty years, especially in farmed salmonid and sea fish output (FAO, 2000). Most of this
12	research and development has focused on high value finfish production, with far less work being
13	done on mollusc and carp production, where production is mostly from units using traditional
14	methods developed over centuries.
15	
16	However, now research in aquaculture has changed to helping production systems address
17	environmental issues including:
18	 Pollution of the sea caused intensive cage systems in coastal waters
19	 Pollution of rivers and streams caused by trout farming units
20	Pesticide residues in fish flesh and the impacts of pesticide use in the marine and
21	freshwater environment
22	• The impact on marine ecosystems of large-scale supply of sea fish for aquaculture feed,
23	for example the 1990s near-collapse of food webs dependent on sandeels in parts of the
24	Northwest Atlantic.
25	
26	2.7.4 Key changes in aquaculture
27	Aquaculture, while practiced for centuries across NAE, has grown in importance since the 1940s,
28	in most parts of the region except for Central and Eastern Europe. In Canada, for example, the
29	industry is growing at 20% per year. There have been very large increases in aquaculture - both
30	freshwater and saltwater – across NAE, propelled in part by explosive growth in salmon
31	production. Despite this growth, North American aquaculture represents 15% or less of wild
32	fishery landings by weight.
33	
34	In the US, salmon has overtaken oysters as the major saltwater aquaculture and is the most
35	important aquaculture crop in Canada. Salmon production is very important in Northern Europe,
36	fuelled by good prices in the 1970s and 1980s. However, by the late 1990s, prices had dropped

37 precipitously.
1

- 2 Due to developments in AKST, intensive rearing methods came to dominate aquaculture
- 3 production. These production systems required the development of specialized feeds and control
- 4 of fungal and bacterial diseases. Increases in salmon production were possible because of new
- 5 techniques for saltwater production. However, the environmental impacts of these intensive
- 6 production systems has caused aquaculture research to shift to addressing pollution concerns,
- 7 pesticide residues and impacts on ecosystems.
- 8

9 2.8 Key Changes in Post-Harvest and Consumption Systems

10 Postwar consumer desire for adequate and safe food at modest prices has driven some of the 11 changes described in the last few subchapters. We now turn our attention to changes in the 12 consumption systems that exist across NAE. In line with trends across the OECD, the share of 13 overall consumer spending on essentials (food, clothing, energy) has declined in Europe; in the 14 UK, it has halved in 40 years. In the UK, one pound in three spent on food is spent away from 15 home and in Ireland it is estimated that one Euro in every four is spent away from home 16 (Henchion and McIntyre, 2004). Declining relative expenditure on food and even food price 17 deflation is a major factor in the level of competition in food retail.

18

19 2.8.1 Changes in the food retail sector in NAE

20 Food retailing has experienced significant changes since 1945. Today, the giants of European 21 food retail are Germany, France and the UK, based on their high populations and mature 22 markets. The ownership structure of the largest companies in European food retail is varied. 23 Carrefour (the world's second largest retailer) and Tesco are publicly held. Metro is publicly held, 24 but with a large proportion owned by founder Otto Beisheim, the Haniel group and the Schmidt-25 Ruthebeck family. Rewe is a cooperative owned by its 3000 retail members, while ITM 26 Intermarché is a consortium of independent merchants. Food accounts for around three-quarters 27 of sales for these companies, except Metro where the figure is closer to 50%. 28

In 2003, European food retailers accounted for 46% of all European retail sales. The food retail
market in Europe is very mature, but the food retail sector has increased its share of the wider
retail market in all but four of 19 countries (France, Spain, Sweden and Denmark) by 19% to
€870bn between 1999 and 2003. Tesco's sales rose by 54% and Wal-Mart Europe by 32%
thanks entirely to the Asda operation in the UK. Non-food is the driver of this supermarket growth,
since food sales are relatively stagnant.

35

There is a close relationship between per capita GDP and the penetration of 'modern' retail
(Figure 2-22). But what is interesting from a European perspective are the outriders, such as Italy

with about 20% below that predicted and the UK, which is about 15% above that predicted by this
relationship. Whether this phenomenon points to durable exceptions to the rule based on cultural
or policy differences, or simply to time lags in some countries, is not currently clear.

4 5

6

Insert Figure 2-22. Large supermarket penetration vs GDP per capita

In CEE countries, the penetration of large supermarket chains in the national food retail markets
is quickly approaching saturation. The EU average is 15 hypermarkets per one million
inhabitants. Hungary has 10 million inhabitants and by the end of 2005 there will be 98
hypermarkets in the country. Hypermarkets in Hungary now account for around a quarter of the
market. Modern retailing already has an 18% share of the Russian market. This trend towards
supermarket penetration in food retail has decreased the number of farmers' markets in many
CEE countries.

14

While there is a general trend toward concentration in Europe, Dobson et al. (2001) point out that the emerging structures of food retail are not always the same These authors use a typology of the *dominant firm* (when the market share of the top firm is >25% and at least twice as high as the second rated firm), the *duopoly*, the *asymmetric oligopoly*, the *symmetric oligopoly* and *unconcentrated* structure (when no firm has a market share >10%) (Table 2-8). In 1999 Italy was the only country ranked as 'unconcentrated', though this no longer applies now that Coop Italia has a 12.5% share.

22

Insert Table 2-8. Market structure of retail in Western Europe, based on market shares of top 5
 retailers

25

26 The internationalization of retail in Europe has been, by comparison with other sectors, a recent 27 phenomenon. There is still quite a strong national characteristic to food retailing in many Western 28 European countries (Table 2-9) though this (a) hides high levels of international collaboration 29 between firms in pan-European sourcing to increase buying power, with buying groups especially 30 strong in Scandinavia and (b) the rise of the deep discounters such as Aldi up the ranks of 31 national players. Food retail in most CEE countries is dominated by the multinational chains. The 32 top 10 retailers in the Czech Republic, for example, are all multinationals. Nevertheless, some 33 domestic cooperatives, trade associations and retail chains (such as COOP, CBA and Reál in 34 Hungary, or VP Market in the Baltic countries) have been able to hold their own against 35 competition by international retailers (Juska, 2002). 36 37 Internationalization allows retailers to use their distribution systems for pan-European

- 38 procurement. Tesco, for instance, exports Hungarian products under its private labels; the firm

Draft - not for citation; 28 March 2008

announced last year it aimed to export HUF 1 billion in Hungarian goods in 2005, with increases
of Hungarian goods to the Czech Republic, Slovakia and Poland. French-owned hypermarket
Auchan also said recently it will increase the sale of Hungarian products outside Hungary's
borders to HUF 5 billion in several years' time.

5 6

Insert Table 2-9. Top retailers across Europe—summary.

7

8 Own brand (private labels) are still rising in the European supermarket scene with an average 9 26% market share in Western Europe (Table 2-10). Growth is strong in parts of CEE—the share 10 of private label products in Hungary was 15% in 2003 and own-brand goods account for around 11 25% of the total Tesco revenue in Hungary. The tight price squeeze forced by supermarkets has 12 been responsible for own brand manufacturers such as Northern Foods struggling with 13 profitability.

14

15 Insert Table 2-10. Outlook for private label in Europe (% sales)

16

17 'Trade spend' is another important feature of European retail, also known as marges arrières 18 (back margins). Supermarkets have been able to use their gatekeeper position to make money on the buy side. This 'trade spend' for suppliers to secure business with supermarkets comprises 19 20 reimbursements to the retailer for the range of products it carries and promotions it carries out 21 and includes supplier rebates, overriders (a discount or rebate related to the performance of the 22 customer, paid in retrospective), unilateral deductions from money due or even demands for ad 23 hoc cash payments. "A typical big European retailer might extract the equivalent of 10% of its 24 total revenues via trade spending" (Economist, 2006).

25

26 Discounters are a growing part of the European food retail landscape with some notable

27 exceptions such as the UK and Ireland. Discounters are a huge part of the market in Germany—

in 2003, Germany accounted for 43% of Western Europe's 32,500 discount stores. But deep

discounting is also growing fast in France, where there is a growing emphasis on price.

30

Buying groups or 'international purchasing and marketing organizations' are means by which
supermarket companies and consortia can increase their buyer power especially when
negotiating with the big brand manufacturers. This is demonstrated by the GNX platform offering
for auction contracts worth \$8bn. Associations between buying groups and the top 30 retailers in
Europe are common. The largest, EMD, has a 10.6% market share in Europe and a sales volume
of EUR 950 million. Buying groups can have a significant impact on actual industry concentration.
For instance in Hungary, from the Top-10 list SPAR and Metro form the buyer group METSPA

- 1 with more than USD 1,800 million sales and Cora (Delhaize group) and Csemege are part of the
- 2 PROVERA buyer group. Because of the buying groups, Grievink (2003) estimates that in western
- 3 Europe, only around 110 buying desks account for about 85% of the total retail food (not
- 4 foodservice) sales of the western European countries (see Figure 2-23).
- 5 6
 - Insert Figure 2-23. The supply chain funnel in Europe
- 7

8 Consolidation of retailers' supply base is creating conditions in which competition between

- 9 suppliers creates its own pressure on producer prices. For example, between May and August
- 10 2004, the big three UK supermarket companies all announced rationalization of their milk supply,
- 11 to two suppliers in the cases of Tesco and Sainsbury's and one in the case of Asda.
- 12

13 2.8.2 Concentration and trends at national levels

14 Germany is famously the toughest market in Europe. Deep discounters have a huge share of the 15 market, accounting for 27% of modern grocery distribution sales, with that share around 50% for 16 some product areas such as milk. The position of discounters is supported by strict planning laws 17 for 'big box' retailing, consumer perceptions of discounter private labels as good quality and 18 popularity across income groups. The rate of growth of the UK food market has slowed and 19 competition at the consumer side is very intense, with a permanent price war. Many firms have 20 struggled to remain competitive and build critical mass in a market where market share is 21 perceived to be key to success, including Morrison's (following the acquisition of Safeway), Marks 22 and Spencer, Sainsbury's (only just starting to reverse a decline) and even Asda (part of Wal-23 Mart group) which has recently reported disappointing figures. This turmoil is not limited to 24 publicly owned companies. The Cooperative Group is now searching for 'efficiencies' after poor 25 sales figures following a series of acquisitions. Only Tesco seems to have managed consistently 26 strong growth in market share at home and abroad (half of that shelf space is now overseas). 27 profits and shareholder value in this period of consolidation of the UK retail sector, while taking 28 massive chunks of business from clothing, electronics, financial service and other non-food 29 sectors. The craft retailer Waitrose has also prospered.

30

Primary producers and suppliers are feeling the squeeze on prices. In a recent survey of farmers by Farmers Weekly magazine, a massive 95% of those questioned were concerned about power imbalance between buyers and suppliers, saying that the government must find ways to make trading relationships between retailers, processors and producers more equitable. Caribbean banana producers have called the price war "perverse transfer of wealth, by some of the supermarkets, from farmers and farm workers of developing countries to the consumers of developed countries" and "anti-development and regressive" (Eurofruit, 2004).

1 2 Despite investigations by the Competition Commission in 2000 and again in 2003 (around the 3 Safeway takeover by Morrison's) and the resulting Supermarkets Code of Practice and 4 subsequent review by the Office of Fair Trading, it is clear that consumer interests remain 5 dominant over those of suppliers in the eyes of the Office of Fair Trading. Indeed, the situation in 6 the UK around producer-supermarket trading can only be described as policy paralysis. 7 8 The UK independent retail sector is in steep decline, with a 7.4% decline in the number of corner 9 shops in the last year alone. Industry watchers say 30,000 local shops - including specialists such 10 as butchers, bakers and greengrocers - will be lost in a decade. 11 12 In North America, food retailing had a relatively slow pace of consolidation. A major wave of 13 consolidation happened in the late 1990s, when Albertson's Kroger became the first coast-to-14 coast supermarket chains. By 2001, Kroger and Albertson's were the largest US grocers. 15 However, Wal-Mart, which until the early 1990s had never sold any groceries, became the largest 16 grocery retailer in 2004, with about 15% of the US grocery market. In Canada, Loblaw's is the 17 dominant grocer in the Canadian market, with Sobey's competing for the number two position. 18 19 Insert Table 2-11. Food retailing in USA 20 21 Today, the top five supermarket chains (Wal-Mart, Kroger, SuperValu, Safeway and Ahold) 22 account for almost 50% of food retail sales in the United States (Table 2-11). By comparison, the 23 top five food retailers accounted for only 20% of food sales in 1993. 24 25 When Wal-Mart entered the supermarket business in the mid-1990s, other stores were wary 26 because of the incredible logistics system and supplier pricing that Wal-Mart brought to the 27 business. More importantly, Wal-Mart's large size and market power caused concern as it 28 integrated backward in the food system by creating relationships with the dominant food chain 29 clusters. Wal-Mart is one of the first supermarkets to use case-ready meat in its stores. 30 The end of the 20th century saw the emergence of truly global food retailers like Carrefour, Wal-31 32 Mart and Tesco. Considering the rapid consolidation of the Latin American supermarket industry 33 by transnational firms, development policy will need to respond to the resulting exclusion of small 34 farmers from regional agrifood markets (Reardon and Berdegué, 2002). 35 36 The significance of the changes in food retailing for production is in the restructuring of supply

37 and distribution networks and in the development of standards enforced by retailers (Reardon

1 and Berdegué, 2002). While food manufacturers have sometimes embraced consolidation

- 2 because it decreases transaction costs, it also distorts power in the chain and puts the food
- 3 retailers in a more powerful position (Stanton, 1999). Another result of restructuring is increasing
- 4 retailer fees, some of which cover real costs but which are also used to generate an income
- 5 stream that creates more gross profit for retailers (FTC, 2000). Manufacturers attributed the rising
- 6 use of fees to greater retailer influence, while retailers attributed it to the increased cost of
- 7 handling products (FTC, 2000).
- 8
- 9 In this arena of negotiated power between manufacturers and retailers, US retailers seem to have

10 an edge, with bigger chains charging higher retailer fees (FTC, 2000)⁻ As power shifts to the

- 11 largest retailers, evidence from the UK indicates that profitability does also (Wrigley, 1997).
- 12 However, retailers are at the mercy of those manufacturers who have successful brands because
- branding is one way to create leverage with retailers. Retailers begin to develop one-on-one
- 14 relationships with dominant food manufacturers who can service their far-flung systems.
- 15 Moreover, retailers can start dictating terms to food manufacturers from their position of power at
- 16 the point of consumption (Mehegan, 1999). Increasing consolidation of the retail sector has
- essentially constrained the way that farmers can respond to the changing nature of the global
- 18 food system (Burch and Goss, 1999).
- 19

The point is that there exist dynamic social relationships within the channel from production to consumption although the trend seems to be that it is more and more difficult for smaller entities in any one sector of the chain to compete effectively. The development of these anti-competitive practices in supply chain management concerns many observers, including those from business schools (Hildred and Pinto, 2002).

25

26 **2.8.3 Changes in food manufacturing and processing**

- The major food manufacturing countries in Western Europe are France, Germany the UK and Italy. Meat, beverages and dairy are the biggest sectors, comprising 20, 15 and 15% respectively of the value of production in 2001 totaling over EUR 600 billion (USDA-FAS, 2003). It is Europe's leading industrial sector and third-largest industrial employer (Table 2-12). Concentration in the food manufacturing sector is relatively low.
- 32
- 33 Insert Table 2-12. Top European food manufacturers, ranked by turnover in 2002]
- 34

35 2.8.4 Market segmentation

- 36 One of the main changes occurring in the last 50 years in NAE can be describe as a growing
- 37 segmentation of the food markets and the emergence of food niche markets, such as PDO/PGI

1 and TSG products in Europe and organic and fair trade production both in Europe and in North

- 2 America. The process of market segmentation has been facilitated by the development of an
- 3 increasing number of food standards and an articulated system of food labeling and certification.
- 4

5 Rise of uniform quality standards for food manufacturing/retailing

6 In recent years there has been a great increase of a all types of standards² in the agrifood

7 system (e.g. food safety, food quality, environmental standards). The prominence of standards

8 has started as regulation of agrifood systems has shifted from nation-states to a broader set of

9 organizations and institutions of the agrifood systems which also include global governance

10 organizations, (e.g., World Trade Organization), multilateral and regional regulatory schemes,

11 (e.g., the EU) and private sector organizations, including transnational corporations (e.g., Cargill

12 and Wal-Mart) (Scholte, 2000; McMichael, 2004; Higgins and Lawrence, 2005).

13 As the organization of agrifood systems has shifted, standards have become one of the most 14 significant emerging practices for governing food (Bain et al., 2005; Higgins and Lawrence, 2005). 15 Economists have typically highlighted the role standards play in helping to reduce transaction 16 costs, increasing the predictability of a product and in general, simplifying what could be a very 17 tedious and complicated process. With the increasing importance of standards, however, a shift 18 has occurred from the use of standards as technical tools for market homogeneity to the use of 19 standards as strategic tools for accessing markets, coordinating systems, enhancing quality and 20 safety assurance, product branding and creating niche markets (Giovannucci and Reardon, 2000; 21 Reardon et al., 2001).

22 The importance of standards has been recognized especially as the way in which the

23 globalization of agriculture and food has been operationalized. Many authors have pointed to the

24 growing concerns surrounding the distributional benefits of standards, especially for poor

countries, small scale producers (both in poor and rich countries) and farmers utilizing alternative

production systems (Dolan and Humphrey, 2000; Reardon and Farina, 2002; Dunn, 2003;

27 Freidberg, 2004; Unnevehr and Roberts, 2004; Bain et al., 2005). In particular, this growing body

of research has highlighted: the rise of different types of standards, the lack of opportunity for

29 specific groups to participate in standard setting, the high costs associated with standards

30 adoption and the elevation of standards that require adherence to specific forms of production

31 and processing in agrifood systems.

² "Standards are documented criteria or specifications, used as rules, guidelines or definitions of characteristics, to ensure consistency and compatibility in materials, products and services. In use standards become measures by which products, processes and producers are judged" (Bain et *al.* 2005: 81). Standards for animal agriculture tend to focus either on food safety or product attributes, which generally encompass quality concerns like meat tenderness or animal welfare issues (Ransom 2006).

1 Historically, standards in most national food sectors have focused on what are called product (or 2 performance) standards— that is the composition (e.g., shape, color, etc.) of the final product 3 and/or health features of the product (e.g. pesticide residues, contaminants, etc.) all of which are 4 easily measured in the end product (Hannin et al., 2006). In much of the recent standards 5 literature the explanation for the emergence of food safety (or product) standards has to do with 6 the decline of nation-state regulation combined with the many well-publicized food safety scares 7 that have occurred in various countries (e.g., BSE - bovine spongiform encephalopathy, E-Coli 8 contaminated meats and vegetables and dioxin-contaminated chicken). Thus, in order to 9 reassure consumers of the safety of food products, countries and companies have imposed more 10 stringent food safety standards. In Europe, NGOs pressure activities and consumers demand are 11 often mentioned as the explanation for the increase in animal welfare standards and more 12 broadly quality standards (Murdoch and Miele, 2004; Miele et al., 2005). Quality standards, (i.e., 13 organics, fair trade, animal welfare) as opposed to food safety standards (i.e., pesticides 14 residues, contaminants), are processed based standards, which means that the focus is on how 15 the product is produced, with definitions of quality revolving around shared, socially constructed 16 values (such as environmental conservation or regional characteristics) (Renard, 2005). 17 Moreover, guality standards are voluntary standards and it is argued that industry leaders adopt 18 voluntary quality standards due to consumer demand, or at the very least, to allow retailers to 19 differentiate products along lines that appeal to consumers, such as animal welfare, 20 environmental sustainability and worker welfare (Hatanaka, Bain and Busch, 2005). 21

22 2.8.5 Food safety, quality regulation and food market niches

Created by FAO and WHO, the Codex Alimentarius Commission has elaborated many
 international standards. According to the Codex Alimentarius definition, food safety is the
 assurance that food will not cause harm to the consumer when it is prepared and/or eaten
 according to its intended use (Codex Alimentarius, 1997).

27

28 Recent food scares in NAE have stimulated public concerns about food and farming. Consumers 29 find it difficult to know where their food comes from, how it is produced and how far it has 30 traveled. Food provision is increasingly organized through complex supply chains, often on a 31 global scale. This has implications for consumer confidence, food safety and public health. In 32 order to address this problem at the global level a number of international standards for food have 33 been elaborated. For food safety the most widespread standard is HACCP which stands for 34 "Hazard Analysis at Critical Control Point". The Codex Alimentarius Commission has adopted 35 HACCP as the international standard for food safety. Under the EU food hygiene legislation, there 36 are over a dozen measures covering specific products, an initiative to consolidate all hygiene 37 legislation into one single text led to the implementation of EU Hygiene of Foodstuffs Regulations, 1998. While HACCP had its origin in the USA, it has now been introduced by the Hygiene Rules
 93/43/EWG in the production line of food in Europe. It bears the main ideas from the worldwide-

3 accepted HACCP-System of the FAO/WHO Codex Alimentarius (OURFOOD, 2005).

4	
5	Chronology of HACCP development (OURFOOD, 2005):
6	1959 - Development of the HACCP concept to assure one hundred percent safety of food
7	to be used in space.
8	1971 - The HACCP system was published and documented in the USA.
9	1985 - The National Academy of Science (NAS) recommended the use of the system.
10	Worldwide the system became used and the FAO/WHO Codex Alimentarius
11	(Food and Agriculture Organisation/World Health Organisation) cited the system
12	in the Codex.
13	1993 - The European regulation 93/43 EG since 1993 provides the use of the system for
14	the production of food.
15	
16	The International Organization for Standardization (ISO) has developed the ISO-9001:2000
17	quality system that aims to enhance customer satisfaction. This includes the processes for
18	continual improvement of the quality system and the assurance of conformity to the customer and
19	applicable regulatory requirements. In global business the certification according ISO 9000 turned
20	out to be an imperative duty. Cerrtification to an ISO 9000 standard does not guarantee the
21	compliance (and therefore the quality) of end products and services; rather, it certifies that
22	consistent business processes are being applied. ³ Although the standards originated in
23	manufacturing, they are now employed across a wide range of other types of organizations,
24	including colleges and universities. A "product", in ISO vocabulary, can mean a physical object,
25	services, or software. ISO 9000 and ISO 14000 standards are implemented by 760,900
26	organizations in 154 countries (Tables 2-13) (ISO, 2005).
27	
28	Insert Table 2-13. Top ten countries for ISO 14001 certificates
29	
30	ISO 22000:2005 Food Safety Management Systems Standard is an international standard that
31	defines the requirements of a food safety management system covering all organizations in the
32	food chain from "farm to fork", including catering and packaging companies. This standard has
33	been developed to harmonize the growing number of national standards for food safety
34	management. The standard combines generally recognized key elements to ensure food safety
35	along the food chain including: interactive communication; system management; control of food

³ Certification body is URS Certification Ltd in India and Europe which accredited by NABCB and UKAS (<u>http://www.ursindia.com</u>)

1 safety hazards through pre-requisite programs and HACCP plans; and continual improvement

- 2 and updating of the management system.
- 3

4 Niche markets. Product differentiation has provided special niches in food markets. These

- 5 markets have been developed by granting protected trade marks/ names so that consumers can
- 6 easily distinguish the special flavor or quality of niche products among similar commodities.

7 These schemes are increasing important for rural development across Europe. Their

8 implementation in the US is a relatively new phenomenon with such regions now being delineated

9 ecologically rather than politically, culturally or economically (Barham, 2005).

10

11 <u>The market for organic products</u>

In 2004, the market value of organic products worldwide reached 23.5 billion EUR (27.8 billion USD), with a market growth of about 9%. The leading regions were Europe, with a share of 49% and North America with a share of 47%. The three largest country markets were USA (\$12.2 billion); Germany (\$4.2 billion) and the UK (\$1.9 billion) (Willer and Yussefi, 2006). In 2005, the global market for organic products reached a value of 25.5 billion Euros, with the vast majority of products being consumed in North America and Europe. For 2006, the value of global markets is estimated to be at more than 30 billion Euros.

19

20 The distribution of the European organic market continues to broaden and deepen as more 21 consumers are attracted in more sectors and in more countries. In Germany a growing number of 22 conventional supermarkets are offering organic products and the number of organic 23 supermarkets continues to increase with 40 new organic supermarkets opening in 2004 alone. 24 The UK market continues to show healthy growth, with much of the growth occurring in non-25 supermarket channels like organic food shops, box schemes and farmers markets. A growing 26 number of catering and food service companies are also offering organic food. The Italian and 27 French markets are the next most important in Europe, however growth rates have slowed in 28 these countries. A smaller market for organic food is found in CEE countries with the region 29 comprising less than 3% of European revenues. Demand for organic products is growing through 30 all CEE countries including Russia, particularly in metropolitan areas. 31 32 The data for the European market is fragmented and reliable detailed country comparisons are

33 difficult to make because of the differences in data collection methods. However, FiBL have

estimated the data which contribute to the profile of the European market reflected in the

following tables for 2003 in which year the European market for organic food and beverages

amounted to \in 11 billion (Table 2-14).

37

Draft - not for citation; 28 March 2008

1	Insert Table 2-14. EU market countries clustered by stage of organic market development, 2001
2	
3	The North American market for organic products has reported the highest growth worldwide.
4	Organic food and drink sales in the US were estimated to have totaled approximately 14.5 billion
5	USD in 2005. With healthy growth rates continuing, the region is expected to overtake Europe
6	and represent most global revenues in 2006. The driver for growth is the increase in marketing
7	and distribution channels, with traditional, dedicated organic retailers like Whole Food Market and
8	Wild Oats being joined by mainstream food multiples. Mainstream grocery retailers now comprise
9	most organic food sales and the range of products is expanding in supermarkets such as
10	Safeway, Albertson's, Wal-Mart and Kroger. The Canadian market is also reporting high market
11	growth.
12	
13	Demand in North America has become so high that local producers are having difficulty in
14	matching supply and organic products are being imported from across the world e.g. organic
15	seeds and grains are coming in from Europe and Asia; organic herbs and spices from Latin
16	America and Asia; organic beef is imported from Australia and Latin America. Large food
17	companies dominate almost every sector with companies such as Dean Food and General Mills
18	active in the market. North America has organic food companies such as Hain Celestial, Sun
19	Opta, Whole Food Market and Planet Organic listed on the stock exchange (FiBl, 2006)
20	
21	Fair trade
22	In 2003, the global Fair Trade sales were over \$895m and sales could increase by a factor of 20
23	or more in the next few years (Nicholls and Opal, 2004). Half the UK population is now aware of
24	Fair Trade and there are similar figures for other European countries. Sales of fair trade products
25	in Europe are growing remarkably well in several countries, largely stagnant in other countries
26	and are not prominent in CEE countries. In 2004 sales grew of 102% in France, 50% in Belgium
27	and 60% in Italy (Wills, 2005) (Table 2-15).

28

29 Insert Table 2-15. Fair trade in Europe – data 2003-2004

30

The findings of the 2005 Fair Trade Trends Report (The Fair Trade Foundation, 2005) clearly demonstrate that the Fair Trade movement has continued to grow rapidly over the past five years. In 2003, total Fair Trade sales in North America including Mexico reached \$291.75 million, a 53% increase over 2002. The US Fair Trade sales currently represent a potentially huge market for the initiative. US Fair Trade market is the largest single national market in the world after UK and the sales are increasing remarkably (Table 2-16).

37

83

Draft – not for citation; 28 March 2008

1 2	Insert Table 2-16. Total gross sales in North America (US and Mexico) 2001-2003
3	Fair Trade Coffee. In 2002, FLO estimated the income benefit to Fairtrade producers at £21m, of
4	which £17m was attributable to sales of Fairtrade certified coffee. TransFair USA estimated that,
5	in five years of activity in the USA, Fair Trade has returned over £16.8m to coffee farmers in
6	developing countries above what they would have received in the conventional market (TransFair
7	USA, 2004). Fair Trade coffee sales vary considerably among different European countries.
8	While coffee sales keep increasing in some countries, in general in Europe are largely stagnant.
9	
10	By contrast, in North America, strong national campaigns have allowed a significant growth and it
11	is likely that in the US and Canada, fair trade coffee sales will reach a market ceiling similar to
12	that in Europe (Murray et al., 2003). Fair Trade Certified coffee is now the fastest-growing
13	segment of the US specialty coffee market. The retail value of TransFair USA certified coffee
14	increased by 59% in 2003 for a total of \$208 million and by 77% in 2004 for a total of \$369
15	million.
16	
17	Fair Trade bananas
18	Fair Trade bananas were introduced in Europe by Max Havelaar in 1996. Since then, Fair Trade
19	bananas had grown 14,655 tonnes by 1998 (data FLO in Murray and Raynolds, 2000). They have
20	captured unprecedented market shares; sales have risen by over 25% per year since 1999,
21	reaching a market share of over 45% in Switzerland (FINE, 2006).
22	
23	Alternatively traded bananas have emerged in US in different way compared to Europe. In US the
24	NGO Rainforest Alliance has certified bananas under its ECO-OK and 'Better bananas' program
25	In 1999. Instead of building an alternative trade that challenges the power of bananas
26	multinational corporations, this NGO has fostered a close collaboration with those companies
27	(Murray and Raynolds, 2000). Trainstair USA began certifying Fair trade bananas only in January
28	2004, data of market shares for FT labeled bananas are not available.
29	2.9.6 Channes in dist/sensumetion
30	2.8.0 Changes in diet/consumption
১ । ১১	The general context in NAE is that of a contrasted situation between the food shortage post
ວ∠ ວວ	and Europe. This trend is attested by a number of key indicators of feed provision (of Chapter 8)
24	in Millennium Ecosystem Assessment, based on EAOSTAT 2004 data). The average feed
35	n million per capita in the world increased from 1961 to 2003 by around 25%. There were buge
36	inequities between industrial and developing countries. This was accompanied by falling food
37	prices as there was a strong decline in the relative importance of food within total consumption
5.	prices, de alere was a strong decime in the relative importance of rood within total obligamption

expenditure from above 40% after WWII to 12-20% in Europe in 1999, (EUROSTAT, 2001) and
 to 10% in the United States in 1996 (USDA, 2006).

3

4 According to 2001 estimates, 13% of the household budget in the EU15 was spent on food and 5 non-alcoholic beverages, but the share of the budget spent on food fell between 1995 and 2001, 6 mainly as a result of increasing available household income. Logically, the share varies with GDP 7 per head: the lower GDP per head of a country, the higher the share of money spent on food. 8 9 In 2005, the consumption of food and drink represented on average 16% of total consumption 10 expenditure per person in the EU-15 countries and 27% in the new Member States (EEA, 2005). 11 Food and drink used to account for the largest share of household consumption, before being 12 gradually overtaken by other necessities such as housing, transport and leisure (Table 2-17). 13 Consumer patterns across the enlarged EU reflect income differences but also the availability of 14 goods and services. 15 16 Insert Table 2-17. Household consumption expenditure in the EU-25 in 2003 (%) 17 18 Significant differences persist among member states (Tables 2-18 and 2-19). The lowest share of 19 expenditure is found in the United Kingdom (9.7%) and the highest in Portugal (18.5%). The 20 share of food and drinks in household expenses remains important in the new member states 21 with an average of 22% against 12% in the EU 15 (Eurostat, 2005). Consumers' habits vary 22 substantially among the 25 Member States. In addition to income, factors such as culture, 23 tradition, household composition and degree of urbanization can influence habits in each country. 24 The accession of the 10 new Member States has made the differences even more apparent than

- before (USDA, 2005). The share of citizens' total expenditure on food is projected to continue
 decreasing. Indeed, food consumption expenditure in the EU is projected to increase by 17%
- between 2000 and 2020, while in the same period total household expenditure could increase by
 57% (EEA, 2005).
- 29

30 Insert Table 2-18. Proportions of expenditures in real values (average of 1995 and 1999)

- 31 Insert Table 2-19. Index of relative price (GDP index for each country, 100)
- 32

Changes in food provision and food nutrients. Increased food availability was made possible by
 increases in production and labor productivity in all sectors of the agricultural and food chains
 (see data in previous parts of chapter 2). AKST has played a major role in this phenomenon, as

36 intensive livestock and crop systems were developed in order to meet quantitative food demand.

1 These changes in food provision resulted in increased amounts of food calories, as well as 2 protein and fats available for consumption in Europe and North America (Tables 2-20). 3 4 Insert Table 2-20. NAE food supply: energy, protein and fats per capita per day 5 6 Available food calories have increased in the range of 18-26% in Western Europe and USA 7 between 1961 and 2003, presently reaching values of 3500 to 3900 calories per capita per day. 8 During the same period, protein supply has increased by 22-25% and fat supply by 29-41%. 9 Increases were much more modest in Eastern Europe, as food calories increased by only 3% and 10 protein by 4% between 1961 and 2003. In contrast, total fat supply increased considerably, i.e. by 11 37% in the same period. 12 13 Noteworthy is the amount of calories provided by lipids in the diet, which is presently around 40% 14 in Western Europe and America, but 30% in Eastern Europe (derived from data presented in 15 Table 2-20). Another feature is the change in the percentage of calories or nutrients derived from 16 animal vs. plant products for Western and Eastern Europe (Table 2-21). Whereas the percentage 17 of calories from animal origin slightly increased between 1961 and 2003, the percentage of 18 proteins from animal origin increased more dramatically (reaching 60% in 2003 for Western 19 Europe). In contrast, the percentage of animal fats in the diet actually decreased over the same 20 period, especially in Eastern Europe where it was quite high in the 1960s. 21 22 Insert Table 2-21. NAE food supply: percentage of energy, protein and fats from animal vs. plant 23 origin 24 25 2.8.7 Key Changes in consumption systems 26 Across NAE, the amount that consumers spend on food provisioning has significantly decreased. 27 reflecting the decline in real prices for food. However, this change has been accompanied by an 28 increasingly differentiated food marketplace. Consumers across NAE are spending more on food 29 eaten away from home and strong markets for organic, fairly trade and other nice food products 30 have developed in NA and Western Europe, with less interest in these markets in most CEE 31 countries. 32 33 The food retail market has become increasingly consolidated across the entire region, resulting in 34 a shift in power away from farmers to food retailers. The increase in standards, some resulting 35 from concerns about food safety and others from demand for quality, has also created some 36 market barriers for farmers. In addition, the widespread availability of so much food has affected 37 diets and diet related diseases across the region.